М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
никусь2222
никусь2222
07.11.2022 07:42 •  Геометрия

Вычислите площадь трапеции abcd с основаниями ad и вс, если вс = 14 см, ad = 26 см, ав = 16 см, ے а = 30°; с подробным решением! (дано можно не писать)

👇
Ответ:
ainashsharipov
ainashsharipov
07.11.2022
Рассмотрим треугольник ABH (прямоугольный).

Угол А = 30°
Против угла в 30° лежит катет равный половине гипотенузы.
BH = BA/2 = 16/2 = 8 (см)

Площадь трапеции:
S = ((BC+AD)/2) * BH = 160 (см²)

ответ: 160 см².

[В чёрном прямоугольнике формула нахождения площади трапеции: полусумма оснований умноженная на высоту]
Вычислите площадь трапеции abcd с основаниями ad и вс, если вс = 14 см, ad = 26 см, ав = 16 см, ے а
4,8(24 оценок)
Открыть все ответы
Ответ:
aajlarov
aajlarov
07.11.2022

      Отрезки МК и NP параллельны соседним сторонам прямоугольника, => соответственно равны им, пересекаются под прямым углом  и  делят  АВСD на 4 прямоугольника, (неважно,  равной или разной площади).  Обозначим точку пересечения МК и NP буквой О.

а)

 Стороны четырехугольника МNKP являются диагоналями получившихся прямоугольников и делят каждый из них пополам (свойство). Поэтому площадь MNKP равна сумме площадей этих половин, т.е. равна половине площади ABCD.

б)

 Площадь  выпуклого четырехугольника равна половине произведения его диагоналей на синус угла между ними.

Так как S(ABCD)=AB•CD,   МК=АD и NP=AB, а sin90°=1, то S(MNKP)=MK•NP•sin90°=0,5•S(ABCD).

в)

  S(MNKP)=S∆MNP+S∆NKP=0.5•MO•NP+0.5•KO•NP=0,5•NP•(MO+OK) => S(MNKP)=0,5•NP•MK =>

S(MNKP) =0,5•S(ABCD), т.к. NP=AB и МК=АD


Впрямоугольнике abcd проведены отрезки mk||ad, np||ab. докажите, что площадь четырёхугольника mnkp р
4,4(95 оценок)
Ответ:
ttappok
ttappok
07.11.2022
Ага
Итак, NK=\frac{1}{3}BK=\sqrt{3}. Значит, DK=2NK=2\sqrt{3}. Считаем площадь равнобедренного ADC=\frac{6*2 \sqrt{3} }{2}=6\sqrt{3}. Получаем, наконец, площадь полной поверхности: 3\sqrt{3}+3*6\sqrt{3}=21\sqrt{3} (площадь основания плюс площади трех боковых граней).
Переходим к объему. Объем пирамиды равен одной трети произведения площади основания на высоту. В нашем случае это площадь ABC, а высота - DN. Найдем DN по теореме Пифагора из знакомого нам DNK. DN=\sqrt{ DK^{2} - NK^{2} }= \sqrt{ (2 \sqrt{3}) ^{2}- (\sqrt{3}) ^{2} }=3. И наконец, V=9\sqrt{3}*3=27 \sqrt{3}
Уффф. Извини, что так долго ждать заставил - замучился формулы писать. Перепроверь подсчеты, а в остальном - как-то так.
4,5(97 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ