Формула площади треугольника по двум сторонам и углу между ними Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.
S авс = СМ × СЕ × sin45° / 2 = 8 × 10 × √2 / 4 = 20√2 см^2
Площади подобных многоугольников относятся как квадрат коэффициента подобия k² = S₂/S₁ = 10/9 k = √(10/9) = √10/3 Периметры подобных многоугольников относятся как коэффициент подобия k = P₂/P₁ = √10/3 P₂ = P₁*√10/3 И по условию разность периметров равна 10 см P₂ - P₁ = 10
P₁*√10/3 - P₁ = 10 P₁(√10/3 - 1) = 10 P₁ = 10/(√10/3 - 1) Можно избавиться от иррациональности в знаменателе, домножив верх и низ дроби на (√10/3 + 1) P₁ = 10*(√10/3 + 1)/((√10/3)² - 1) = 10*(√10/3 + 1)/(10/9 - 1) = 10*(√10/3 + 1)*9 = 30√10 + 90 см
Площади подобных многоугольников относятся как квадрат коэффициента подобия k² = S₂/S₁ = 10/9 k = √(10/9) = √10/3 Периметры подобных многоугольников относятся как коэффициент подобия k = P₂/P₁ = √10/3 P₂ = P₁*√10/3 И по условию разность периметров равна 10 см P₂ - P₁ = 10
P₁*√10/3 - P₁ = 10 P₁(√10/3 - 1) = 10 P₁ = 10/(√10/3 - 1) Можно избавиться от иррациональности в знаменателе, домножив верх и низ дроби на (√10/3 + 1) P₁ = 10*(√10/3 + 1)/((√10/3)² - 1) = 10*(√10/3 + 1)/(10/9 - 1) = 10*(√10/3 + 1)*9 = 30√10 + 90 см
Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.
S авс = СМ × СЕ × sin45° / 2 = 8 × 10 × √2 / 4 = 20√2 см^2
ответ: 20√2 см^2