Поскольку ab||mn то ∠abm=∠bmn, как поскольку bn=nm то ∠bmn=∠mbn, как углы при основании из этого всего ∠mbn=∠bmn, тоэсть bm - бисектриса, которая в равнобедренном триугольнике есть и медианой ⇒ am=mc
Искомое расстояние равно разности расстояния от вершины прямого угла до центра окружности и радиуса вписанной в этот треугольник окружности. Формула радиуса вписанной в прямоугольный треугольник окружности r=(a+b-c):2 где а и b катеты, а с - гипотенуза. Чтобы найти радиус, нужно знать гипотенузу. Она равна 17 см ( отношение сторон данного треугольника из Пифагоровых троек 8:15:17. Можно проверить по т.Пифагора) r=(8+15-17):2=3 см Радиус вписанной окружности перпендикулярен сторонам в точках касания. ОН=ОК=3, четырехугольник ОМСК - квадрат. Расстояние СО от прямого угла до центра равно диагонали d этого квадрата. d=3√2 см Нет нужды доказывать, что расстояние измеряется перпендикуляром, СМ ⊥ отрезку касательной в точке М, и М является ближайшей к вершине С точкой вписанной окружности. CМ=СО-ОМ=3√2-3=3(√2-1) см
Градусная мера дуги РК = 80 это означает, что центральный угол, опирающийся на эту дугу (это угол РОК))) равен 80 градусов, а вписанный угол, опирающийся на эту же дугу (это угол РМК))), равен 80/2 = 40 градусов... т.к. треугольник по условию равнобедренный, то угол РКМ = РМК = 40 и угол МРК = 100 градусов а про дугу МК можно порассуждать двумя вписанный угол РМК = 100, значит дуга = 100*2 = 200 градусов... или по дугам... дуги РК и РМ в сумме 80+80 = 160 градусов дуга МК --это то, что осталось от окружности, т.е. 360-160 = 200