Дуже ті хто дійсно знає! діагональ бічної грані чотирикутної призми дорівнює l і утворюєз площиною основи кут а (альфа) . знайдіть площу бічної поверхні призми !
Якщо прима правильна. то можна розв'язати так. Висота призми h=L·sіnα. Сторона основи дорівнює х=L·соsα. Площа однієї бічної грані дорівнює S1=х·h=L²·sіnα·соsα. Площа бічної поверхні S=4·L²·sіnα·соsα.
Высота горы ≈ 0,683 км ≈ 683 м. Объяснение: Дано: ΔABC; ВС - высота горы; ∠BAC = 30°; ∠BDC = 45°; AD = 0,5 км. Найти высоту горы BC. Решение. 1) Расстоянием от точки до прямой является длина перпендикуляра, опущенного из этой точки на прямую. ⇒ BC⊥AC, ΔABC прямоугольный, ∠С = 90°, высота горы - катет BC. 2) В ΔABC ∠BAC = 30° (по условию), ∠ACB = 90°, тогда ∠ABC = 180° - 30° - 90° = 60°. Обозначим для удобства высоту горы катет ВС = x. В прямоугольном треугольнике катет, лежащий против угла 30° равен половине гипотенузы ⇒ гипотенуза AB = 2x км. 3) В ΔDBC ∠BDC = 45° (по условию), ∠DCB = 90°, тогда ∠DBC = 180° - 90° - 45° = 45°. ⇒ ΔDBC равнобедренный, так как имеет два равных угла ⇒ DC = BC = x км. 4) Тогда в ΔABC сторона AC = x + 0,5 км. Из ΔABC найти BC можно двумя По теореме Пифагора:
ответ 14,4 см. Раз биссектриса перпендикулярна, значит она является ещё и медианой и делит сторону пополам. Тогда ВС = 4,8 см (т. к. ВМ - половина). Треугольник равносторонний, т. к. ещё сказано, что высота ВК, проведённая к АС, делит сторону пополам, а, следовательно, является медианой. Если мы проведём из точки С ещё одну высоту, то она также будет являться медианой и биссектрисой. И все три биссектрисы (или высота и медианы) пересекуться в одной точке. Чтобы найти периметр надо просто 4,8 умножить на 3. Получим 14,4 см.
Висота призми h=L·sіnα.
Сторона основи дорівнює х=L·соsα.
Площа однієї бічної грані дорівнює S1=х·h=L²·sіnα·соsα.
Площа бічної поверхні S=4·L²·sіnα·соsα.