В основаниии прямоугольного паралелепипеда лежит прямоугольник.Диагональ делит прямоугольник на два прямоугольных треугольника и диагональ является гипотенузой треугольника, по теореме Пифагора (сумма квадратов катетов равна квадрату гипотенузы) на ходим гипотенузу: гипотенуза^2 = 2^2 + 3^2
гипотенуза = square 13
теперь представляем диагональ в прямоугольном параллелепипеде - это получается прямоугольный треугольник. Один катет в этом треугольнике одновременно является гипотенузой из предыдущего пункта решения, равен он square 13, диагональ параллелепипеда является гипотенузой треугольника, а второй катет надо найти по теореме пифагора:square38^2 = (square 13)^2 + катет^2
катет =5
Площадь поверхности состоит из двух площадей оснований и 4 площадей боковых поверхностей.
Площадь основания = 2*3 = 6
Площадь одной боковой поверхности = 2*5 = 10
Площадь второй боковой поверхности = 3*5 = 15
Общая площадь = 2(5+12+18)=70
ответ:70 см^2
Пусть дан прямоугольный треугольник, в котором известны гипотенуза с и радиус вписанной окружности r.
Примем один из катетов за х, второй равен √(с² - x²).
Точки касания окружности со сторонами отстоят:
- от вершины прямого угла на расстоянии r,
- на гипотенузе от вершины острого угла с катетом х на расстоянии
x - r.
- от второй вершины расстояние равно √(с² - x²) - r.
Длина гипотенузы равна: c = (x - r) + (√(с² - x²) - r).
√(с² - x²) = c - x + 2r. Возведём в квадрат:
с² - x² = c² + x² + 4r² - 2cx - 4rx + 4rc.
Получили квадратное уравнение:
x² - (c + 2r)*x +2(r² + rc) = 0, одиз из корней которого соотетствует длине принятого катета х, второй корень - это второй катет.
ответ: по корням уравнения x² - (c + 2r)*x +2(r² + rc) = 0 строятся катеты.
Сделаем проверку правильности формулы для известного "египетского" треугольника с катетами 3 и 4 и гипотенузой 5.
Для него r = (a+b-c)/2 = (3+4-5)/2 = 1.
Подставим в полученную формулу r = 1, c = 5.
x² - (5 + 2*1)*x +2(1² + 1*5) = 0.
x² -7x +12 = 0, D = 49 - 48 = 1,
x1 = (7 - 1)/2 = 3,
x2 = (7 + 1)/2 = 4.
ответ верный.
2х+2х+8=44.
4х=36
х=9
х+4=9+4=13
Площадь равна х*(х+4)=9*13=117
ответ: 117