1.Преобразования плоскости
Преобразованием плоскости называют правило, с которого каждой точке плоскости ставится в соответствие точка этой же плоскости. ... Точку F(M) называют образом точки M при преобразовании F, а точку M называют прообразом точки F(M) при преобразовании F.
2.Преобразование фигуры F в фигуру F', при котором каждая ее точка X переходит в точку X', симметричную относительно данной точки О, называется преобразованием симметрии относительно точки О. При этом фигуры F и F' называются симметричными относительно точки О.
4.Другое определение: фигура центрально-симметрична, если для каждой точки фигуры точка, симметричная ей относительно центра симметрии, тоже принадлежит фигуре. Примеры центрально-симметричных фигур: окружность, параллелограмм, правильная шестиконечная звезда.
5.Центра́льной симметри́ей относительно точки A называют преобразование пространства, переводящее точку X в такую точку X′, что A — середина отрезка XX′. Центральная симметрия с центром в точке A обычно обозначается через, в то время как обозначение можно перепутать с осевой симметрией.
3.