Основание прямой призмы - прямоугольный треугольник с гипотенузой 20см и катетом 16см. диагональ боковой грани , содержащей второй катет треугольника равна 13 см. найдите длину бокового ребра призмы.
Найдем 2 катет по теореме Пифагора a²+b²=c² b²=c²-a² b²=20²-16² b²=144см² b=12см т.к. призма прямая, то диагональ боковой грани(d) со 2 катетом(b) и боковым ребром(r) образуют прямоугольный треугольник, где d является гипотенузой. По т.Пифагора d²=b²+r² r²=d²-b² r²=13²-12² r²=25см² r=5см ответ: длина бокового ребра призмы равна 5см
Найдем точку пересечения диагоналей прямоугольника. Координаты середины вектора АС (диагональ) равны: О(3,5;0,5). Координаты вектора равны разности соответствующих координат точек его конца и начала. Тогда вектор АО{3,5;0,5}, а вектор ВО{2,5;-2,5}. Это половины диагоналей и угол между ними находим по формуле: cosα=(x1*x2+y1*y2)/[√(x1²+y1²)*√(x2²+y2²)]. В нашем случае: cosα=(3,5*2,5+0,5*2,5)/[√(3,5²+0,5²)*√(2,5²+(-2,5)²)]. cosα=(8,75+1,25)/[√(12,25+0,25)*√(6,25+6,25)]. Или cosα=10/12,5=0,8. Значит угол α≈36°
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Скалярное произведение находим по формуле: (a,b)=x1*x2+y1*y2. Вектор АВ{1;3} Вектор ВС{6;-2} (ABxBC)=6+(-6)=0. Значит стороны АВ и ВС перпендикулярны. Следовательно, АВСD - прямоугольник.
Вот решение, попробуйте разобраться. :) Если повернуть фигуру вместе с точкой M на 60° вокруг центра окружности, то точка M перейдет в точку N, лежащую уже на дуге BC (треугольник при этом перейдет сам в себя). Ясно, что NB = MA, NC = MB. Поэтому MBNC - равнобедренная трапеция (то есть MC II BN); (внимание, это предложение и есть, собственно, решение задачи) Поскольку угол этой трапеции при основании MC равен 60° независимо от положения точки M (это вписанный угол, опирающийся на дугу в 120°), проекции равных боковых сторон MB и NC на основание MC равны их половинам, откуда и следует, что основание MC равно сумме второго основания NB = MA и боковой стороны NC = MB; то есть MC = MA + MB
a²+b²=c²
b²=c²-a²
b²=20²-16²
b²=144см²
b=12см
т.к. призма прямая, то диагональ боковой грани(d) со 2 катетом(b) и боковым ребром(r) образуют прямоугольный треугольник, где d является гипотенузой.
По т.Пифагора
d²=b²+r²
r²=d²-b²
r²=13²-12²
r²=25см²
r=5см
ответ: длина бокового ребра призмы равна 5см