2) черчишь высоту, которая равна 2 кореней из 3, рассмотрим треугольник, который получился:
один из углов = 90, другой 30(120-90), поэтому сторона, лежащая напротив угла в 30 гладусов равна половине гипот->маленький отрезок большего основания равен корню из 3. больший отрезок равен 6(прямоугольник получился), а s=(a+b)/2*h=24
1)не совесм уверена, но все же:
третий угол треугольника равен 30, а это значит, что противолежащая сторона равна x/2(гипот=х), по теореме пифагора:
х^2=(x/2)^2+100
3x^2=400
x=20/корень из 3
s=ab=100/корень из 3
1.
Обозначим радиус меньшей окружности буквой r, а большей - R.
По условиям задачи r/R=2/7.
Ширина полосы будет равна R-r и по условиям равна 24 (см), значит: R-r=24 (см), то есть R=r+24 (см).
С учетом полученного результата имеем:
r/r+24=2/7,
7r=2*(r+24),
7r=2r+48,
5r=48,
r=9,6 (см).
Так как R=r+24, то R=9,6+24=33,6(см).
Таким образом диаметр одной окружности будет равен D=2R=33,6*2=67,2(cм), а диаметр второй окружности будет равен
d=2r=9,6*2=19,2 (см).
2.
Расстояние между центрами окружностей - отрезок ОА делится точкой ка в отношении 2:3. Значит, отрезок ОА разделен на 2+3=5 равных частей. Причем ОК содержит 2 части, а КА - 3 части.
10 см : 5 = 2 см - длина каждой из равны частей.
Тогда ОК=2*2 = 4 см. Диаметр меньшей окружности равен 2*4=8 см.
АК = 3*2 = 6 см. Диаметр большей окружности равен 2*6 = 12 см.
Наверное вот так ...
Условие задачи неполное. Должно быть так:
Основанием тетраэдра МАBC служит треугольник АBC в котором AB = BC и АС = 2а√3. Точка О принадлежит АС отрезок МО перпендикулярен АС и ОА = ОС. Расстояние от точки О до прямой МB равно а. Найти угол между плоскостями (AMB) и (CMB).
Проведем ОК⊥МВ. Тогда ОК - расстояние от точки О до прямой МК и ОК = а.
ΔАВС равнобедренный, значит медиана ВО (ОА = ОС по условию) является и высотой,
ВО⊥АС,
МО⊥АС по условию, значит
АС⊥(МОВ).
МВ лежит в плоскости (МОВ), значит МВ⊥АС и ОК⊥МВ по построению, тогда МВ⊥(АКС) и значит ∠АКС - линейный угол двугранного угла между плоскостями (АМВ) и (СМВ).
АО = ОС = АС/2 = а√3, МО - медиана и высота в треугольнике МАС, значит он равнобедренный,
МА = МС.
ΔМАК = ΔМСК по гипотенузе и катету (∠АКМ = ∠СКМ = 90°, МА = МС и МК - общий катет), тогда
АК = КС, значит медиана ОК в равнобедренном треугольнике АКС является и высотой и биссектрисой, т.е. ОК⊥АС и ∠АКС = 2∠ОКС.
ΔОКС: ∠КОС = 90°,
tg∠OKC = OC / OK = a√3 / a = √3
Тогда ∠ОКС = 60°.
∠АКС = 2∠ОКС = 120°