Диагонали ромба взаимно перпендикулярны и делятся в точке пересечения пополам, значит половина одной диагонали равна Х, а половина другой = Х+2. Тогда в прямоугольном треугольнике (одном из четырех, на которые делится ромб диагоналями) квадрат гипотенузы (сторона ромба) равен сумме квадратов катетов (половин диагоналей). То есть 10² = Х² + (Х+2)², откуда Х²+2Х-48=0. Решаем квадратное уравнение. Х = (-2±√(4+4*48)):2 = (-2±14):2 = 6. (Х - половина меньшей диагонали!) Итак, диагонали равны 12см и 16см.
Пл шара = 4п25^2 = 2500п
пл сеч = пр^2 = 49п отсюда р = 7
25 - 7 = 18 см