АВСДА1В1С1Д1 - усеченная пирамида , в основаниях квадраты АВСД со стороной =10, А1В1С1Д1 со стороной=2, ОО1-высота пирамиды=7, АС=корень(АД в квадрате+СД в квадрате)=корень(100+100)=10*корень2, А1С1=корень(А1Д1 в квадрате+С1Д1 в квадрате)=корень(4+4)=2*корень2,
рассматриваем АА1С1С как равнобокую трапецию, АА1=СС1, проводим высоты А1К и С1Н на АС, КА1С1С-прямоугольник А1С1=КН=2*корень2, А1К=С1Н=ОО1=7-высота, треугольник АА1К=треугольник НС1С как прямоугольные по гипотенузе и катету, АК=СН=(АС-КН)/2=(10*корень2-2*корень2)/2=4*корень2
АН=АК+КН=4*корень2+2*корень2=6*корень2, треугольник АС1Н прямоугольный, АС1-диагональ пирамиды=корень(АН в квадрате+С1Н в квадрате)=корень(72+49)=11
В треугольнике BDA все ∠ по 60°, тк во-первых он равнобедренный (AD = AB), значит ∠ у основания равны, значит и третий ∠ равен 180-60-60=60°
∠ В общий у треугольников BOP и BDA и равен тоже 60°, а ∠ ВOP и ∠BPO равны ∠ BDA, ∠BAD треугольника BDA, тк PO ||AD, BD и BA секущие и по одному из св-в внешние углы равны
Значит треугольник ВОР тоже равносторонний, а в равностороннем треугольнике радиус оп. окр. вычисляется по формуле а√3 делить на 3. Вместо "а" подставляем значение стороны ВР и получаем
6√3/3, что ≈ 3,46