ответ. 102.
Объяснение:
Решение. Проведем отрезки BD и CE. Пусть они пересекаются в точке О. Заметим, что треугольники BCD и CDE равнобедренные с углом 108 при вершине, а значит, углы при основании равны 36 (они отмечены на рисунке одной дугой). Тогда BCE = BDE = 72. Угол COD равен 108 (т.к. в треугольнике COD два угла по 36). Поэтому COB = 180108 = 72. Углы по 72 отмечены на рисунке двумя дугами. Получаем, что треугольники CBO и DEO равнобедренные. Значит, AB = BO =BC = CD = DE = EO = х. Заметим, что OBA = 9636 = 60. Значит, треугольник OBA равнобедренный с углом 60 при вершине, т.е. равносторонний. Поэтому AO = x. Вычислим угол AOE AOE = EOBAOB = 10860 = 48. Треугольник AOE равнобедренный с углом 48 при вершине. Поэтому OEA = (18048)/2 = 66. Получаем, что угол E пятиугольника равен AED = AEO+OED = 66+36 = 10
2часть прямой, состоящая из данной точки и всех точек, лежащих по одну сторону от неё
3 точка отсчета, начало луча
4 бесконечные промежутки (полупрямые) числовой прямой
5 называется начальной точкой
6 Геометрическая фигура состоящая из двух точек А и В и всех точек прямой АВ, лежащих между ними, называется отрезком АВ
7 двумя точками , которые его ограничивают
8 отрезок можно разделить на конечное кол-во отрезков , их длину можно складывать
9 AВ , CD
AB=CD
10 находится на равном расстоянии от обоих концов данного отрезка
Нужно опустить перпендикульрную прямую из вершина угла на плоскость. Получится октаэдр
Угол между плоскостью и треугольником это угол между треугол. и треугол. снования.
Кактет треугольника обозначим буквой а. А высоту а корней из 2
Боковая грань октаэдра. Прям. треуг. с уголом в 30 градусов и гипотнузой будет а.Второй же катет будет a/2.
В искомом треуг, образован.высотами известны катет и гипотенуза, по ним определять синус или косинус( на выбор), и потом по ним скать угол.
Синус противолежащий катет к гипотенузе
косинус прилежащий катет к гипотенузе.