Подобные задачи ("стороны или углы пропорциональны числам") решаются следующим образом: 1) Вводится переменная х, обозначающая одну часть (пишется "пусть х -одна часть") 2) Стороны треугольника записываются через эту переменную: 3х, 4х, 6х ( то есть в каждой стороне треугольника содержится столько-то этих частей) 3) Стороны складываются, образуя периметр. Получаем уравнение: 3х + 4х+ 6х = 39 13Х = 39 х =3 4) Нам нужна меньшая сторона, то есть та сторона, которая содержит меньше всего таких частей. Она равна 3х =3*3 =9
cosA=√(1-sin²a)=√(1-1/9)=√(8/9)=2√2/3
sina*tga-cosa=sin²a/cosa-cosa=(sin²a-cos²a)/cosa=(1/9-8/9)/(2√2/3)=-7/9*3/2√2=-7/6√2=-7√2/12