М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
polina2004121
polina2004121
11.12.2020 00:44 •  Геометрия

Назовите координаты самой северной и самой южной точки земного шара

👇
Ответ:
bananchik1213
bananchik1213
11.12.2020
Самая северная точка- северный полюс, ее координаты-90 градусов северной широты, а долгота не определена
 
с самой южной так же- это южный полюс- 90 градусов южной широты, долгота не определена
4,5(56 оценок)
Ответ:
sashakO5класс
sashakO5класс
11.12.2020
Самая северная точка северный полюс её координаты 90 градусов северной широты,а долгота не определённая.
самая южная точка южный полюс её координаты 90 градусов южной широты,а долгота неопределенная. ( любая)
4,8(86 оценок)
Открыть все ответы
Ответ:
kalina19762005
kalina19762005
11.12.2020

етрия.  8  класс. тест  4.  вариант  1.

в δ авс   ∠асв = 90°.  ас и вс — катеты, ав — гипотенуза.

cd — высота треугольника, проведенная  к гипотенузе.

ad — проекция катета ас на гипотенузу,

bd — проекция катета вс на гипотенузу.

высота cd делит треугольник авс на два подобных ему (и друг другу) треугольника: δ adc   и   δ cdb.

из пропорциональности сторон подобных   δ adc   и   δ cdb следует:

ad  :   cd = cd  :   bd. отсюда cd2  = ad  ∙  bd. говорят:   высота прямоугольного треугольника, проведенная к гипотенузе,  есть средняя пропорциональная величина между проекциями катетов на гипотенузу.

из подобия δ adc   и   δ аcb следует:

ad  :   ac = ac  :   ab. отсюда  ac2  = ab  ∙  ad. говорят:   каждый катет есть средняя пропорциональная величина между всей гипотенузой и проекцией данного катета на гипотенузу.

аналогично, из подобия δ сdв   и   δ аcb следует:

bd  :   bc = bc  :   ab.  отсюда  bc2  = ab  ∙  bd.

решите :

1.  найти высоту прямоугольного треугольника, проведенную к гипотенузе, если она делит гипотенузу на отрезки 25 см и 81 см.

a)  70 см;   b)  55 см;   c)  65 см;   d)  45 см;   e)  53 см.

2.  высота прямоугольного треугольника, проведенная к гипотенузе, делит гипотенузу на отрезки 9 и 36. определить длину этой высоты.

a)  22,5;   b)  19;   c)  9;   d)  12;   e)  18.

4.  высота прямоугольного треугольника, проведенная к гипотенузе, равна 22, проекция одного из катетов равна 16. найти проекцию другого катета.

a)  30,25;   b)  24,5;   c)  18,45;   d)  32;   e)  32,25.

5.  катет прямоугольного треугольника равен 18, а его проекция на гипотенузу 12. найти гипотенузу.

a)  25;   b)  24;   c)  27;   d)  26;   e)  21.

6.  гипотенуза равна 32. найти катет, проекция которого на гипотенузу равна 2.

a)  8;   b)  7;   c)  6;   d)  5;   e)  4.

7.  гипотенуза прямоугольного треугольника равна 45. найти катет, проекция которого на гипотенузу равна 9.

8.  катет прямоугольного треугольника равен 30. найти расстояние от вершины прямого угла до гипотенузы, если радиус описанной около этого треугольника окружности равен 17.

a)  17;   b)  16;   c)  15;   d)  14;   e)  12.

10.  гипотенуза прямоугольного треугольника равна 41, а проекция одного из катетов 16. найти длину высоты, проведенной из вершины прямого угла к гипотенузе.

a)  15;   b)  18;   c)  20;   d)  16;   e)  12.

a)  80;   b)  72;   c)  64;   d)  81;   e)  75.

12.  разность проекций катетов на гипотенузу равна 15, а расстояние от вершины прямого угла до гипотенузы равно 4. найти радиус описанной окружности.

a)  7,5;   b)  8;   c)  6,25;   d)  8,5;   e)  7.

сверить ответы!

 

 

последние тесты 6.3.06. умножение отрицательных чисел. примеры с десятичными дробями.6.3.04. сложение чисел с разными знаками. примеры с обыкновенными дробями.6.3.03. сложение чисел с разными знаками. примеры с десятичными дробями.6.3.02. сложение отрицательных чисел. примеры с обыкновенными дробями.6.3.01. сложение отрицательных чисел. примеры с десятичными дробями.архивы   выберите месяц    октябрь 2016      сентябрь 2016      апрель 2016      январь 2016      ноябрь 2015      октябрь 2015      март 2015      февраль 2015      декабрь 2014      октябрь 2014      сентябрь 2014      август 2014      июнь 2014      май 2014      апрель 2014      март 2014      февраль 2014      январь 2014      декабрь 2013      ноябрь 2013      октябрь 2013      сентябрь 2013      май 2013      апрель 2013      март 2013      февраль 2013    в видео.мой электронный адрес: [email  protected] андрющенко татьяна яковлевнарубрики -10  (6)-11  (4)-7  (14)-8  (8)-9  (8)-10  (1)-11  (1)-7  (3)-8  (4)-9  (2)ент-2013  (20)ент-2014  (25)-5  (3)-6  (9)новости  (13)огэ  (6)
4,6(79 оценок)
Ответ:
WWW2014
WWW2014
11.12.2020

Определение: "Углом между плоскостью и не перпендикулярной ей прямой называется угол между этой прямой и ее проекцией на данную плоскость".

Опустим перпендикуляр С1Н на прямую СD1, лежащую в плоскости А1ВС (это плоскость А1ВСD1, так как секущая плоскость пересекает параллельные плоскости АА1В1В и DD1C1C по параллельным прямым А1В и D1C). Отрезок С1Н перпендикулярен любой прямой, проходящей через точку Н, лежащую в данной плоскости (свойство). Значит <C1HB=90° и искомый угол - это угол С1ВН - угол между наклонной ВС1 м ее проекцией ВН на плоскость А1ВС. В прямоугольном треугольнике С1ВН: синус угла С1ВН - это отношение противолежащего катета С1Н к гипотенузе ВС1.

По Пифагору D1C=√(D1C1²+CC1²) = √(36+64) = 10 ед (так как АВ=D1C1, a AA1=CC1, как боковые ребра параллелепипеда.

Точно так же ВС1=√(ВC²+CC1²) = √(225+64) = 17 ед.

Высота С1Н из прямого угла по ее свойству равна:

С1Н=(С1D1*CC1/D1C = 6*8/10 = 4,8 ед.

Тогда Sinα = C1H/BC1 = 4,8/17 ≈ 0,2823.

α = arcsin0,2823 ≈ 16,4°.


Впрямоугольном параллелепипеде abcda1b1c1d1 найдите угол между плоскостью a1bc и прямой bc1, если aa
4,6(64 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ