1. д) через любые три точки проходит плоскость, и притом только одна. (аксиома)
2.д) бесконечно много ( т.е. имеют общую прямую, на которой лежат все общие точки этих плоскостей) или ни одной ( если они параллельны).
3. в) Три данные точки лежат на одной прямой - они принадлежат ей. Через прямую и точку D, не лежащую на этой прямой, можно провести плоскость, притом только одну. ответ:1;
4. в) определяют в любом случае; Через три точки, не лежащие на одной прямой, можно провести плоскость, причём только одну.
5. б) через прямую и не лежащую на ней точку проходит плоскость, и притом только одна;
Дано:
а = 6 см - меньшее основание трапеции
α = 120° - тупой угол трапеции
γ = 30° - угол между диагональю трапеции и основанием
Найти:
b - большее основание трапеции
β = 180° - α = 180° - 120° = 60° - острый угол трапеции
Поскольку диагональ образует с основаниями угол γ = 30°, то угол ζ между боковой стороной и диагональю равен
ζ = β - γ = 60° - 30° = 30°
Треугольник, образованный диагональю, боковой стороной и меньшим основанием, является равнобедренным, поскольку
угол ζ = углу γ = 30°
Поэтому боковая сторона с равна меньшему основанию а
с = а = 6 см
Тогда проекция cb боковой стороны с на большее основание b равна
сb = c · cos β = 6 · 0.5 = 3 (см)
b = a + 2cb
b = 6 + 2 · 3 = 12 (cм)
Большее основание трапеции 12 см