СМ : МК : КА = 2 : 3 : 2, т.е. СМ - две одинаковые части, МК - три такие же части, а КА - 2 части. Тогда
СМ : СК : СА = 2 : 5 : 7
Если прямая параллельна стороне треугольника, то она отсекает треугольник, подобный данному, значит
ΔМСТ подобен ΔАСВ и коэффициент подобия равен:
k₁ = CM : CA = 2 : 7
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Smct : Sabc = 4 : 49
Smct = 4 · 98 / 49 = 8 см²
ΔКСР подобен ΔАСВ,
k₂ = CK : CA = 5 : 7
Skcp : Sacb = 25 : 49
Skcp = 25 · 98 / 49 = 50 см²
Skmtp = Skcp - Smct = 50 - 8 = 42 см²
Sakpb = Sacb - Skcp = 98 - 50 = 48 см²
Диагонали ромба пересекаются под прямым углом. Если на диагоналях ромба от точки их пересечения отложены четыре равных отрезка, то в полученном четырехугольника получится, что диагонали равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы четырехугольника пополам (то, что делят углы пополам видно из того, что диагоналями четырёхугольник делится на 4 равных равнобедренных прямоугольных треугольника, у которых катеты -это половина диагоналей, а гипотенуза - сторона четырехугольника; следовательно углы при гипотенузе равны по 45 градусов). Углы полученного четырехугольника - прямые. Все это относится к свойствам квадрата, значит четырёхугольник -квадрат, что и требовалось доказать.
Пусть AB = a
По теореме Пифагора:
Тогда KC = EC ⇒ ΔKCE - равнобедренный.
Тогда ∠EKC = ∠CEK.
Рассмотрим четырехугольник EKMP.
Он вписанный ⇒ ∠EPM = 180° - ∠EKM и ∠KMP = 180° - ∠KEP.
Но ∠EKM = ∠EPM ⇒ ∠EKM + ∠KMP = 180° ⇒ эти углы односторонние. Значит, EK||PM.
б) Из равенств (1) и (2) ⇒
По теореме Пифагора:
По теореме о квадрате касательной:
В ΔEKC по теореме косинусов:
По теореме косинусов в ΔEMC