Чтобы упростить задачу, уменьшим сначала треугольник в три раза, а в конце снова в три раза увеличим. Итак, мы считаем, что периметр равен 12, а один катет больше другого на 1. Конечно, тут же вспоминается египетский треугольник 3-4-5, который удовлетворяет обоим условиям . Других треугольников быть не может, так как если бы меньший катет был больше 3, то второй катет был бы больше 4, а тогда гипотенуза, сосчитанная по теореме Пифагора, была бы больше 5, а тогда периметр был бы больше 12. Аналогичное рассуждение про то, может ли меньший катет быть меньше 3.
Теперь, увеличив треугольник 3-4-5 в 3 раза, получаем треугольник 9-12-15
Обозначим за х меньшую сторону параллелограмма. Тогда его большая сторона равна 4х. Периметр равен сумме всех сторон, значит: х + 4х + х + 4х = 20√2 10х = 20√2 х=2√2 Большая сторона в 4 раза больше, значит она равна 4х2√2 = 8√2 Площадь параллелограмма равна произведению его основания на высоту: S = 8√2 x h, где h - высота. Построим высоту. Мы получаем прямоугольный треугольник, у которого известен по условию один из углов - это 45°. Известно, что синус угла прямоугольного треугольника равен отношению его противолежащего катета к гипотенузе. Противолежащий катет в данном случае - это наша высота h, которую мы не знаем. Гипотенуза треугольника - это меньшая сторона параллелограмма, т.е. 2√2. Синус угла 45° равен √2 / 2. sin 45 = h / 2√2. Отсюда находим h: h = sin 45 x 2√2 = √2/2 x 2√2 = √2 x √2 = 2 Находим площадь параллелограмма: S = h x 8√2 = 2 x 8√2 = 16√2
Обозначим за х меньшую сторону параллелограмма. Тогда его большая сторона равна 4х. Периметр равен сумме всех сторон, значит: х + 4х + х + 4х = 20√2 10х = 20√2 х=2√2 Большая сторона в 4 раза больше, значит она равна 4х2√2 = 8√2 Площадь параллелограмма равна произведению его основания на высоту: S = 8√2 x h, где h - высота. Построим высоту. Мы получаем прямоугольный треугольник, у которого известен по условию один из углов - это 45°. Известно, что синус угла прямоугольного треугольника равен отношению его противолежащего катета к гипотенузе. Противолежащий катет в данном случае - это наша высота h, которую мы не знаем. Гипотенуза треугольника - это меньшая сторона параллелограмма, т.е. 2√2. Синус угла 45° равен √2 / 2. sin 45 = h / 2√2. Отсюда находим h: h = sin 45 x 2√2 = √2/2 x 2√2 = √2 x √2 = 2 Находим площадь параллелограмма: S = h x 8√2 = 2 x 8√2 = 16√2
Других треугольников быть не может, так как если бы меньший катет был больше 3, то второй катет был бы больше 4, а тогда гипотенуза, сосчитанная по теореме Пифагора, была бы больше 5, а тогда периметр был бы больше 12. Аналогичное рассуждение про то, может ли меньший катет быть меньше 3.
Теперь, увеличив треугольник 3-4-5 в 3 раза, получаем
треугольник 9-12-15
ответ: 9; 12; 15