1. Для начала в треугольнике АВС из вершины В на основание АС опустим высоту ВН.
Площадь треугольника АВС = 1/2 * ВН * АС
Из этой формулы найдём ВН: 12=1/2*ВН*8, и отсюда ВН = 3
Теперь рассмотрим треугольник АВН.
Он является прямоугольным, так как ВН - высота (построение).
Гипотенуза АВ = 6, а катет ВН, лежащий напротив ∠А, равен 3.
Катет равен половине гипотенузы в том случае, если он лежит напротив угла = 30 градусов. Значит, ∠А = 30 градусов.
ответ: ∠А = 30 градусов.
2. Можем применить формулу для нахождения площади треугольника:
S = 1 / 2 * AB * BC * sin120.
Отсюда можем выразить AB = S / (1 / 2 * BC * sin120).
sin120=√3 / 2.
Подставляем значения: AB = 12√3 / (1 / 2 * 6 * √3 / 2) = 8
ответ: 8.
3. Прямоугольник (назовём ABCD) является параллелограммом. Значит точкой пересечения (точка О) диагонали делятся пополам, а по свойству прямоугольника они и равны.
Тогда AO=BO, треугольник-равнобедренный. Т.к. равнобедренный треугольник имеет угол 60°, то становится равносторонним (все углы 60°). Значит, половинки диагоналей (АО и OB) = 4, тогда диагонали (АС и BD) = 4×2=8.
По формуле площади прямоугольника через диагонали, что S прямоугольника равна произведению диагоналей на синус острого угла между ними, получаем: 8×8×sin60° = 64×√3/2 = 32√3.
4. Нет площади. Как решать?
1 вариант.
1) Если известны высота призмы и её диагонали (это катет и гипотенуза прямоугольного треугольника), то находим второй катет в треугольниках, составленных из Н = 2 см, D1 = 8 см D2 = 5 см.
Получаем диагонали ромба в основании призмы.
d1 = √(8² - 2²) = √(64 - 4) = √60 = 2√15 см.
d2 = √(5² - 2²) = √(25 - 4) = √21 см.
Зная диагонали основания, находим его сторону.
а = √((d1/2)² + (d2/2)²) = √(15 + (21/4)) = √(81/4) = 9/2 = 4,5 см.
2) Дано диагональное сечение куба с площадью, равной 49√2 см².
Его площадь равна: S = ad = a*(a√2) = a²√2.
Приравняем: a²√2 = 49√2, отсюда а = √49 = 7 см.
Диагональ куба определяется по формуле:
D = a√3 = 7√3.