Объяснение:
У ромба 2 пары равных внутренних углов, сумма которых равна 360°.
Пусть тупой угол равен 2х, тогда острый будет х. Получаем: 2*2х+2х=360
6х=360
х=60.
Значит острый угол ромба равен 60°, а тупой 120°.
Площадь ромба равна половине произведения его диагоналей.
Найдем диагонали.
Известно, что диагонали ромба делят внутренние углы пополами и пересекаются под прямым углом. Исходя из этого, приняв, что диагонали ромба пересекаются в точке О и ∠АВС - тупой, рассмотрим ΔВСО.
Он прямоугольный с ∠ОСВ= 30° и ∠ОВС=60° при гипотенузе ВС. Значит его катет ВО = ВС·sin30° = 3√3,
катет СО=ВС·sin60° = 6√3 · √3 ÷2 = 9
Мы определили длины половин диагоналей ромба.
Тогда площадь ромба АВСD равна
3√3 × 9 × 2 = 54√3 =
В треугольнике FK = 1,5 а FM = 2,5, не наоборот, так как FM - гипотенуза, она не может быть больше катета FK
Смотри, находим по теореме Пифагора катет MK
Синус - отношение противолежащего катета к гипоетнузе
Косинус - отношение прилежащего катета к гипотенузе
Тангенс - отношение противолежащего катета к прилежащему
Из этого мы получаем, что
sin F = MK/FM = 2/2,5 = 0,8
sin M = FK/FM = 1,5/2,5 = 0,6
cos F = FK/FM = 1,5/2,5 = 0,6
cos M = MK/FM = 2/25 = 0,8
tg F = MK/FK = 2/1,5 = 4/3
tg M = FK/MK = 1,5/2 = 0,75