1) вектор AD (-6 - (-3); -3 - 5; 0 - (-6) ) = (-3; -8; 6)
координаты вектора находятся как разность координат конца и начала вектора
2) Расстояние между точками B и D это длина вектора BD
Вектор BD( -6 - 5; -3 - (-2); 0 - 4) = (-11; -1; -4)
Длина вектора это квадратный корень из суммы квадратов координат вектора т.е. =
3) Координаты середины отрезка это полусумма координат концов отрезка. Т.е.
точка М ( (-3+5)/2; (5 + (-2))/2 ; (-6+4)/2 ) = (1; 1,5; -1)
4) Произведение векторов AB и CD это сумма произведений их координат.
Сначала найдем вектора.
AB (5-(-3); -2-5; 4-(-6)) = (8;-7; 10)
CD (-6-0; -3-4; 0-3) = (-6; -7; -3)
Теперь перемножим координаты векторов и сложим их
AB * CD = 8*(-6) + (-7)*(-7) + 10*(-3) = -48+49-30 = -29
5) Угол между векторами можно найти из формулы векторного произведения векторов, которое равно произведению модулей векторов на косинус угла между ними.
Как уже было найдено в п4
AB (8;-7; 10) , CD (-6; -7; -3) и AB * CD = -29
Модуль |AB| равен
Модуль |CD| равен
Тогда AB * CD / |AB| * |CD| = что приблизительно равно -0,204948276
6) Аналогично пункту 5
Угол между векторами можно найти из формулы векторного произведения векторов, которое равно произведению модулей векторов на косинус угла между ними.
Как уже было найдено ранее
вектор AD (-3; -8; 6)
Найдем вектор ВС
Вектор ВС (0-5; 4-(-2); 3-4) = (-5; 6; -1)
Теперь найдем AD * ВС = (-3)*(-5) + (-8)*6 + 6*(-1) = -39
Модуль |AD| равен
Модуль |ВС| равен
Тогда AD * ВС / |AD| * |ВС| = что приблизительно равно -0,352767774
7) Вектор BD уже был найден BD(-11; -1; -4)
Вектор CB= - ВС = (5; -6; 1)
Найдем вектор AC (0-(-3); 4-5; 3-(-6) ) = (3; -1; 9)
Найдем сумму векторов AC и BD
AC(3; -1; 9) + BD(-11; -1; -4) = (3 + (-11); -1 + (-1); 9 + (-4) ) = (-8; -2; 5)
Теперь найдем произведение этого вектора на CB(5; -6; 1)
Произведение векторов равно (-8; -2; 5) * (5; -6; 1) = (-8)*5 + (-2)*(-6) + 5*1 = -23
8) Условие коллинеарности это пропроциональность координат векторов (если они не равны нулю)
В нашем случае AB(8;-7; 10) и CD(-6; -7; -3) не имеют нулевых координат, значит можно проверить на пропорциональность.
Очевидно
Следовательно вектора не коллинеарны.
Напиши уравнение окружности, которая проходит через точку 8 на оси Ox, и через точку 4 на оси Oy, если известно, что центр находится на оси Ox.(x−...)²+y²=...²
Объяснение:
Пусть центр окружности имеет координаты О(х;0) .
Точки принадлежащие окружности имеют координаты (8;0) и (0;4). Их координаты удовлетворяют уравнению окружности:
(x –х₀)²+ (y – у₀)² = R² , где (х₀;у₀)-координаты центра .
(8-х)²+(0-0)²=R² , или 64-16х+х²=R²
(0-х)²+(4-0)²=R² или х²+16=R² . Вычтем из 1 уравнения 2. Получим :
64-16х-16=0
-16х=-48
х=3. Центр имеет координаты О(3;0).
Найдем R=√( (3-0)²+(0-4)² )=5.
(x− 3)²+y²=5²
Средняя линия равна половине основания, значит основание равно 4 см, боковые стороны равны, раз треугольник равнобедренный - по 7 см
Ищем периметр Р=7+7+4=18 см