М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
nelli37
nelli37
30.12.2022 16:20 •  Геометрия

Решение : высоты остроугольного треугольника авс, проведенные из вершин в и с, продолжили до пересечения с описанной окружностью в точках в1 и с1. оказалось, что в1с1 проходят черес центр описанной окружности. найдите угол вас

👇
Ответ:
MiyaGi123
MiyaGi123
30.12.2022
Хорошая задача.

Докажем сначала Теорему (так захотелось назвать этот простенький, но очень важный геометрический факт, который уже много раз мне решать запутанные геометрические задачи).

Теорема. Если высоту BD остроугольного треугольника ABC продолжить до пересечения с описанной окружностью в точке B_1, а точку пересечения высот обозначить буквой H, то HD=DB_1.

Иными словами, точка, симметричная ортоцентру H (то есть точке пересечения высот) относительно стороны треугольника, лежит на описанной окружности.

Кстати, верна еще одна теорема (которая сейчас нам не понадобится, поэтому ее я доказывать не буду; однако серьезный человек постарается доказать ее самостоятельно):

Точка, симметричная ортоцентру относительно середины стороны треугольника, лежит на описанной окружности.

Переходим к доказательству теоремы. Как это часто бывает в задачах, связанных с окружностью, доказывать мы будем не равенство отрезков, а равенство углов. Итак, ∠BB_1C=∠BAC=α как вписанные и опирающиеся на одну дугу⇒∠ACH=90°-α⇒∠CHD=α⇒ΔHCB_1 равнобедренный, CH=CB_1, HD=DB_1 (так как высота в равнобедренном треугольнике является и медианой), ∠HCD=∠B_1CD.
Уф, вроде бы все, что только можно, мы написали. Одно из выписанных равенств и записано в теореме.

Дальше можно идти разными путями, даже никак не выберу, на каком остановиться. То ли воспользоваться подобием треугольников ABC и ADE (D - основание высоты CD) с коэффициентом подобия cos α (но ведь этим нельзя пользоваться без доказательства...), то ли пойти другим путем. Ладно, пошли другим. По условию B_1C_1 - диаметр ⇒∠C_1BB_1 прямой как вписанный и опирающийся на диаметр). По доказанной теореме 
∠C_1BA=∠B_1BA, а в сумме они дают 90°⇒каждый из них равен 45°.
Но ∠BAC=∠ABC_1 как внутренние накрест лежащие при пересечении параллельных прямых AC и C_1B прямой AB ( объясняю для тех, кто, как принято сейчас говорить, "не въехал": AC⊥BD, так как BD - высота, C_1B⊥BB_1 по доказанному - помните, что угол C_1BB_1 прямой как опирающийся на диаметр? А две прямые, перпендикулярные третьей, параллельны) ⇒ ∠BAC= 45°

ответ: 45°

PS Специалисты, знающие подобие ΔBAC и DEA с коэффициентом cos α, приходят к ответу еще быстрее: DE = R окружности, так как DE является средней линией ΔB_1HC_1 с основанием, равным диаметру окружности;
DE/BC=cos α; BC=2Rsin α (второе равенство является теоремой синусов)⇒ 2sinα·cos α=1; sin 2α=1; 2α=π/2; α=π/4

за внимание
4,7(94 оценок)
Открыть все ответы
Ответ:
semenkrut123
semenkrut123
30.12.2022
Треугольники АВ1В и АА1В прямоугольные с общей гипотенузой АВ, значит оба они вписаны в одну окружность с диаметром АВ.
Точка О - центр окружности. АО=ВО=АВ/2=4/2=2.
В тр-ке АА1В1 ОА1=ОВ1=R=2.
По теореме косинусов cos(А1ОВ1)=(ОА1²+ОВ1²-А1В1²)/(2·ОА1·ОВ1)= (2²+2²-(2√3)²)/(2·2·2)=-4/8=-1/2.
∠А1ОВ1=arccos(-1/2)=120°.
Если точка пересечения двух секущих к окружности находится вне окружности, то угол между секущими равен половине разности дуг, которые они высекают. В нашем случае АС и ВС - секущие, значит:
∠АСВ=(∩АВ-∩А1В1)/2=(180°-120°)/2=30° - это ответ. 

Втреугольнике abc проведены высоты aa1 и bb1. чему равен угол c, если ab=4 и a1b1= 2 корня из 3х. (п
4,6(36 оценок)
Ответ:
ksusha293
ksusha293
30.12.2022
В  правильной пирамиде ЕАВС боковые грани  - прямоугольные равнобедренные треугольники с катетами 7√2 см, значит гипотенузы в них (стороны основания пирамиды) равны 7√2·√2=14 см.
В тр-ке ЕАВ опустим высоту ЕМ, а в тр-ке ЕМС проведём высоту МК. М∈АВ, К∈ЕС.
В тр-ке ЕАВ ЕМ=ab/c=ЕА·ЕВ/АВ=(7√2)²/14=7 см.
В правильном тр-ке АВС высота СМ=а√3/2=14√3/2=7√3 см.
Высота пирамиды ЕО опускается в центр вписанной в основание окружности. r=МО=СМ/3=7√3/3 см.
В тр-ке ЕМО ЕО=√(ЕМ²-МО²)=√(7²-(7√3/3)²)=7√6/3 см.
Площадь тр-ка ЕМС можно вычислить двумя через высоты ЕО и МК, запишем их, сразу приравняв друг к другу:
СМ·ЕО/2=ЕС·МК/2,
МК=СМ·ЕО/ЕС,
МК=(7√3·7√6)/(3·7√2)=7√18/3√2=7√9/3=7 см.
МК - расстояние между скрещивающимися рёбрами АВ и ЕС. В правильной пирамиде все подобные расстояния равны.
ответ: 7 см.
4,7(70 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ