Расстояние от точки до плоскости – длина перпендикуляра, опущенного из точки на эту плоскость. 1) Обозначим расстояние от В до плоскости - ВС, от М до плоскости - МН. АС= проекция АВ на плоскость, ⇒ А, Н и С лежат на одной прямой. Отрезки, перпендикулярные плоскости , параллельны. Угол М=углу В как углы при пересечении параллельных МН и ВС секущей АВ, углы Н и С прямые, угол А общий для ∆ АМН и ∆ АВС ⇒ они подобны. Из подобия следует АВ:АМ=ВС:МН=(2+3):2⇒ ВС:МН=5:2 МН=2•(12,5:5)=5 м Если АВ - перпендикуляр к плоскости, то расстояние от нее до В=12,5, а до М равно 2/5 от АВ и равно 5 м. –––––––––––––––––––––––––––––––––––––– 2)Пусть наклонные будут: ВС=а, ВА=а+6 ВН- расстояние от общего конца В до плоскости. Т.к. это расстояние общее, ВН⊥ плоскости, то из прямоугольного ∆ АВН ВН²=АВ²-АН² из прямоугольного ∆ ВСН ВН²=ВС²-НС²⇒ АВ²-АН²=ВС²-НС² (а+6)²-17²=а²-7² ⇒ решив уравнение, получим 12а=204 а=17 см ВС=17 см АВ=17+6=23 см ––––––––––––––––––––– 3) Пусть эти опоры КМ=4 м, ТЕ=8 м, МЕ=3 м. Т.к. обе вертикальные, то они параллельны. Т - выше К на 4м, расстояние между К и точкой Р на ТЕ=3м, ∆ КТР с отношением катетов 3:4 - египетский ⇒ гипотенуза КТ=5 м ( проверка по т.Пифагора даст тот же результат). ответ - 5 м.
Средняя линия треугольника - это отрезок, соединяющий середины двух сторон треугольника. Средняя линия треугольника параллельна его третьей стороне и равна ее половине.
5. 1) КН║АС, КН = АС/2 как средняя линия треугольника АВС, МР║АС, МР = АС/2 как средняя линия треугольника ADC, значит КН║МР и КН = МР, а если противоположные стороны четырехугольника параллельны и равны, то это параллелограмм. КНРМ - параллелограмм. 2) Аналогично доказываем, что КНРМ параллелограмм и добавим, что НР = KM = BD/2 (как средние линии соответствующих треугольников) КН = МР = АС/2. В прямоугольнике диагонали равны, значит стороны параллелограмма КНРМ равны, и следовательно это ромб. 3) Все то же и КН║МР║АС, КМ║НР║BD. Диагонали ромба перпендикулярны, значит и смежные стороны параллелограмма КНРМ перпендикулярны, и следовательно, это прямоугольник. 4) Так как квадрат - это прямоугольник с равными сторонами, то из задач 2) и 3) следует, что КНРМ - ромб с перпендикулярными смежными сторонами, то есть квадрат.
6. По свойству средней линии треугольника: КН = АС/2 = 15/2 = 7,5 см НР = АВ/2 = 10/2 = 5 см КР = ВС/2 = 12/2 = 6 см
Угол А=С=60:2=30
Внешний угол при вершинах А и С равен 120+30=150