Решение.
1. Найти косинус наименьшего угла треугольника. Это угол С.
Напротив наименьшей стороны лежит наименьший угол. Значит, напротив угла С лежит сторона АВ=4.
Теорема косинусов гласит: квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.
Для треугольника АВС:
АВ²= ВС²+АС²–2×ВС×АС×cos∠C;
4²= 5²+7²–2×5×7×cos∠C;
16= 25+49–70cos∠C;
70cos∠C= 25+49–16;
70cos∠C= 58;
cos∠C= 58/70, это приблизительно, если округлить до тысячных равно 0,829.
Записываем в ответ:
cos∠C= 0,829.
2. Если воспользоваться калькулятором и посчитать значение угла С, а потом округлить его до целых, то выйдет ∠С=34°.
Решение.
1. Найти косинус наименьшего угла треугольника. Это угол С.
Напротив наименьшей стороны лежит наименьший угол. Значит, напротив угла С лежит сторона АВ=4.
Теорема косинусов гласит: квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.
Для треугольника АВС:
АВ²= ВС²+АС²–2×ВС×АС×cos∠C;
4²= 5²+7²–2×5×7×cos∠C;
16= 25+49–70cos∠C;
70cos∠C= 25+49–16;
70cos∠C= 58;
cos∠C= 58/70, это приблизительно, если округлить до тысячных равно 0,829.
Записываем в ответ:
cos∠C= 0,829.
2. Если воспользоваться калькулятором и посчитать значение угла С, а потом округлить его до целых, то выйдет ∠С=34°.
В прямоугольном равнобедренном тр-ке ЕВА высота ЕК=ЕА/√2=7.
АВ=ЕА·√2=14.
В правильном тр-ке АВС высота СК=АВ√3,2=14√3/2=7√3.
В тр-ке ЕСК проведём высоту КМ.
Пусть ЕМ=х, тогда СМ=ЕС+ЕМ=7√2+х.
Из прямоугольных тр-ков EKM и СКМ катет КМ можно найти по т. Пифагора двумя
КМ²=ЕК²-ЕМ²=СК²-СМ²,
49-х²=147-(7√2+х)²,
49-х²=147-98-14√2х-х²,
14√2х=0,
х=0.
Вывод: отрезок ЕМ=0, значит ЕК⊥ЕС, значит искомое расстояние между скрещивающимися рёбрами ЕС и АВ равно ЕК=7 - это ответ.
PS. Здесь я рассмотрел общий нахождения расстояния между скрещивающимися прямыми без проверки треугольника ЕСК на прямоугольность. Это можно было сделать сразу, перед построением высоты КМ, тогда решение будет гораздо короче и без длинных расчётов. Но такое везение бывает очень редко ;)
PPS Высоту КМ можно построить и внутри треугольника ЕСК, тогда ЕМ=х, СМ=7√2-х, но на результат это всё-равно не повлияет. Просто если треугольник тупоугольный с тупым углом КЕС (но мы пока не знаем об этом) и если построить высоту КМ внутри треугольника, то отрезок EM окажется отрицательным, что подскажет нам, что треугольник тупоугольный.