Сумма острых углов в прямоугольном треугольнике 90 градусов, поэтому сумма их половин 45 градусов, и углы между биссектрисами острых углов будут 45 градусов и 135 (ну, там 4 угла, пары вертикальных... в сумме 180, конечно). Значит, речь идет не о двух острых углах, а о прямом и остром.
Тем же определяем, что углы между биссектрисами прямого и острого угла Ф равны Ф/2 + 45 градусов и 135 - Ф/2 градусов.
в первом случае Ф =2*(70 - 45) = 50 градусов, а второй угол треугольника 90 - Ф = 40 градусов.
Во втором случае 135 - Ф/2 = 70 просто получается Ф > 90.
То есть ответ 40 и 50 (третий угол 90, конечно), в таком треугольнике биссектрисы углов 90 градусов и 50 градусов пересекаются под углом 70 градусов.
Сумма двух векторов: начало второго вектора совмещается с концом первого, сумма же векторов есть вектор, с началом, совпадающим с началом первого, и концом, совпадающим с концом 2-го. Тогда:а). СА=СВ+ВА=а+b.б). СО=СВ+ВО. Но ВО=(1/2)*BD, так как диагонали параллелограмма точкой пересечения делятся пополам. BD=BC+CD, BC=-CB как вектора, равные по модулю, но направленные в противоположные стороны.Значит BD=-a+b=b-a. (1/2)*BD=(b-a)/2.Тогда СО=a+(b-a)/2=(a+b)/2.в). BD=BC+CD=-a+b=b-a.г). СМ=CD+DM=CD+CB/2 (так как точка М - середина вектора DA, а DA=CB как противоположные стороны параллелограмма).СМ=b+а/2.
Сумма острых углов в прямоугольном треугольнике 90 градусов, поэтому сумма их половин 45 градусов, и углы между биссектрисами острых углов будут 45 градусов и 135 (ну, там 4 угла, пары вертикальных... в сумме 180, конечно). Значит, речь идет не о двух острых углах, а о прямом и остром.
Тем же определяем, что углы между биссектрисами прямого и острого угла Ф равны Ф/2 + 45 градусов и 135 - Ф/2 градусов.
в первом случае Ф =2*(70 - 45) = 50 градусов, а второй угол треугольника 90 - Ф = 40 градусов.
Во втором случае 135 - Ф/2 = 70 просто получается Ф > 90.
То есть ответ 40 и 50 (третий угол 90, конечно), в таком треугольнике биссектрисы углов 90 градусов и 50 градусов пересекаются под углом 70 градусов.