1) Б
2) Б
3) А
4)В
5) Г
6) А
7)Пусть боковая сторона = 5х, тогда основание =2х
Так как треугольник равнобедренный, значит вторая боковая сторона тоже = 5х
Отсюда периметр Р=5х + 2х + 5х=48
Решаем уравнение 5х + 2х + 5х = 48
12х = 48
х= 4
Основание = 2х = 2*4 = 8
Боковая сторона = 5х = 5*4 = 20
8)Т.к. ΔADC = ΔA1D1C1, то АС = А1С1, AD = А1D1, ∠A = А1 АВ = AD + DB, A1B1 = A1D1 + D1B1, т.к. АВ = А1В1, DB = D1B1, то AD = A1D1
В ΔАВС и ΔА1В1С1:
∠А = ∠А1 АС = А1С1, т.к. ΔADC = ΔA1D1C1, АВ = А1В1, следовательно, ΔАВС = ΔА1В1С1 по 1-му признаку равенства треугольников.
Два перпендикуляра к одной плоскости параллельны. Значит
АА₁║ВВ₁.
Две параллельные прямые задают плоскость, которая пересекает данную плоскость по прямой А₁В₁. Так как отрезок АВ лежит в плоскости (АВВ₁), то и точка D лежит на линии пересечения плоскостей.
Т.е. точки А₁, В₁ и D лежат на одной прямой.
∠ADA₁ = ∠BDB₁ как вертикальные,
∠AA₁D = ∠BB₁D = 90° по условию, значит
ΔAA₁D подобен ΔBB₁D по двум углам.
ΔAA₁D: ∠AA₁D = 90°, по теореме Пифагора
DA₁ = √(DA² - AA₁²) = √(25 - 9) = √16 = 4 см
B₁D : A₁D = BD : AD = BB₁ : AA₁ = 2 : 1
BB₁ : 3 = 2 : 1 ⇒ ВВ₁ = 6 см
BD : 5 = 2 : 1 ⇒ BD = 10 см
АВ = AD + DB = 5 + 10 = 15 см
S=ab/2=3·4/2=6 см.
р=(3+4+5)/2=6 см.
r=6/6=1 см - это ответ.