Три окружности, радиусы которых равны 1 см 2 см 3 см, попарно касаются внешне друг друга. найдите радиус окружности, проходящей через центры данных окружностей. 35 за решение
Обозначим центр окружности радиуса 1 -А,2 -В,3-С треугольник АВС имеет стороны АВ=1+2=3,ВС=2+3=5,АС=1+3=4 Как видим,это египетский прямоугольный треугольник где гипотенуза ВС=5 Если в этот треугольник вписать окружность,то ВС-будет ее диаметром,т.к. угол АВС-прямой,вписанный в окружность. Соответственно,радиус окружности=2.5
Пусть вершины A,B,C параллелограмма ABCD лежат в плоскости α. Докажем, что вершина D также лежит в этой плоскости. Пусть диагонали AC и BD параллелограмма пересекаются в точке O. Так как точки A и C лежат в α, вся прямая AC лежит в α, тогда и точка O лежит в α. Значит, прямая BO также лежит в α, поскольку точки B и O лежат в α. Но вершина D находится на прямой BO, а значит, находится в α, как и три другие вершины, что и требовалось доказать.
Вариант 2 - прямые AD и BС параллельны, если точки A,B,C лежат в α, то прямая BC лежит в α. Тогда прямая AD может либо лежать в α, либо быть параллельной α. Но прямая AD имеет с α общую точку А, значит, прямая AD лежит в α и все вершины параллелограмма лежат в α.
Из точки В проведём перпендикуляр ВД к АС . Для этого продолжим АС, поскольку угол ВАС больше 90, это пересечение будет за пределами треугольника. На плоскости L возьмём точку К. Проведём к ней перпендикуляр ВК из В.Это и будет искомое расстояние. ДС ребро двугранного угла образованного плоскостью L и плоскостью АВС.Угол КДВ=30 это линейный угол данного угла. Найдем ВД. Применим теорему Пифагора. ВД это общий катет треугольников ДВА и ДВС. Обозначим ДА=Х. Тогда( АВ квадрат)-(АД квадрат)=(ВС квадрат-ДС квадрат). Или (169-Х квадрат)=((225-(4+Х)квадрат). 169-Хквадрат=225-16 -8Х-Хквадрат. Отсюда Х=АД=5. Тогда ВД =корень из(АВ квадрат-АДквадрат)=корень из(169-25)=12. ВК=ВД*sin30=12*1/2=6.