Круг с центром О Хорда АВ=64, хорда СД=48, АВ||CД Опустим из О перпендикуляр ОН на СД, он же перпендикулярен АВ и пересекает АВ в точке Е. ЕН=8 - расстояние между хордами: ОН=ОЕ+ЕН=ОЕ+8 ΔОАВ - равнобедренный (ОА=ОВ - радиусы), тогда ОЕ - высота, медиана (АЕ=ЕВ=32) и биссектриса: ОА²=АЕ²+ОЕ²=1024+ОЕ² аналогично ΔОСД - равнобедренный (ОС=ОД - радиусы), тогда ОН - высота, медиана (СН=НД=24) и биссектриса: ОС²=СН²+ОН²=576+(ОЕ+8)²=576+ОЕ²+16ОЕ+64=ОЕ²+16ОЕ+640 Т.к. ОА=ОС, то 1024+ОЕ²=ОЕ²+16ОЕ+640 16ОЕ=384 ОЕ=24 Значит радиус ОА=√1024+576=1600=40 Диаметр круга равен 2ОА=2*40=80
Изначально так:///Пусть задана окружность ω (A; R) на плоскости Oxy, где точка A, центр окружности – имеет координаты a и b. ..Таким образом, координаты x и y любой точки окружности ω (A; R) удовлетворяют уравнению (x – a)^2 + (y – b)^2 = R^2./// Раскрыть скобки, получить х^2-2ах+а^2+у^2-2ву-в^2=R^2Преобразовав чуток поиметь своё выражение. Теперь в обратную:х^2+y^2+6х-8у=х^2+2*х*3+3^2-3^2 +у^2-2*у*4+4^2-4^4 = (х+3)^2 + (у-4)^2 ...Остальные цифири - в R^2 или ещё как, судя по недопечатанности хвостика вопроса вашего.Суть решения - из общей строки многочлена вытащить квадрат суммы/разности при "х", и квадрат суммы/разности при у.Остальное - как уж получится.Ага?