Из прямоугольного треугольника ABD
AD^2=AB^2+BD^2=9+16=25
AD=5
Площадь основания равна 2*площадь ABD=2*(3*4/2)=3*4=12
AD параллельно BC, следовательно параллельно B1C1, поэтому AD принадлежит плоскости AB1C1, и это прямая пересечения плоскости основания с плоскостью AB1C1
Пусть BE высота в треугольнике ABD
Тогда угол B1EB это угол между плоскостью основания и плоскостью AB1C1, так как BE перпендикулярно AD, B1E перпендикулярно AD по теореме о трёх перпендикулярах.
Треугольник B1EB -- прямоугольный треугольник с углом 45 градусов, а следовательно, равнобедренный прямоугольный треугольник, поэтому B1B=BE
Чтобы найти высоту BE выразим площадь треугольника ABD двумя
площадь ABD = AB*BD/2 = AD*BE/2, отсюда
BE=AB*BD/AD=3*4/5=12/5=2,4
Площадь полной поверхности равна
2*площадь основания+площадь боковой поверхности
площадь боковой поверхности = периметр основания умножить на высоту
периметр основания = AB+BC+CD+AD=3+5+3+5=16
тогда площадь боковой поверхности 16*2,4=38,4
площадь полной поверхности
2*12+38,4=24+38,4=62,4
Из условия нам известно, что катеты прямоугольного треугольника равны √7 см и 3 см.
Для того чтобы найти гипотенузу треугольника мы будем использовать теорему Пифагора.
Вспомним ее.
Квадрат гипотенузы равен сумме квадратов катетов.
a2 + b2 = c2.
Подставим известные значения и решим полученное уравнение.
(√7)2 + 32 = x2;
7 + 9 = x2;
x2 = 16;
Извлечем квадратный корень из обеих частей уравнения и получим:
x1 = 4; x2 = -4.
Второй корень не подходит, так как длина катета не может быть отрицательным числом.
ответ: 4.
должно быть верно)
a)
б)