1) 5+10 = 15 см - длина АВ
2) 15²-12²=ВС². (По теореме Пифагора) 225-144=81, ВС =√81=9 см (ВС=9 см)
3) Площ. АВС находим так (АС*ВС)÷2 , т.е. (12*9)÷2=54 см²
Теперь надо найти площ. треугольника МВК и вычесть ее из площ. АВС.
4) Т.к. углы АСВ и МКВ - прямые, а АВ=10 см, что составляет 2/3 от АВ, то ВК равно 2/3 от ВС, т.е. 6 см. ВК=6 см.
5) По теор. Пифагора МВ²-ВК²=МК², т.е 100-36=64, МК-√64=8 см
6) Площ. МВК находим так (МК*ВК)÷2 , т.е. (8*6)÷2= 24 см²
7) Площ. четырехугол. АМКС = 54-24=30 (30 см²)
Дано:
AD - высота
AD = 14.4 дм
sin C = 4/5
Найти АВ и АС.
Решение.
Рассмотрим треугольник АВС. AD - высота к стороне ВС, отсюда угол ADB = углу ADC = 900.
Рассмотрим треугольник ADC - прямоугольный, т.к. угол ADC - прямой.
sin С = AD / AC (отношение противолежащего катета к гипотенузе), отсюда
AC = AD / sin A = 14,4 : 4/5 = 18
Рассмотрим треугольник АВС.
Угол С = углу А, отсюда sin C = sin A = 4/5
Найдем cos А.
cos2A + sin2A = 1
cos2A = 1 - sin2A = 1 - (16/25) = 9/25
cos A = 3/5
По свойствам равнобедренного треугольника (следствие теоремы косинусов):
a = b / 2cosA, отсюда
BC = AC / 2cosA = 18 / (6/5) = 15
ответ: АС = 18 дм, АВ = ВС = 15 дм.
на сторонах BC, AC и AB соответственно. Отрезки
пересекаются в одной точке тогда и только тогда, когда
Лемма. Если числа таковы, что
то
,
лишь бы знаменатель в ноль не обращался.
Доказательство леммы. Оно элементарно. Кстати, те, кто в первый раз видит эту лемму, очень часто реагируют так: "Вы что же, числители и знаменатели складываете?! У нас в школе за это двойки ставят!" Впрочем, присмотревшись к утверждению и убедившись, что мы не собираемся таким образом дроби складывать, обычно все успокаиваются, особенно разобравшись в доказательстве.
Обозначим общее значение дробей и
буквой
Тогда
что и требовалось доказать.
Чтобы эта лемма стала совсем очевидной, хочется привести еще и то, что я иногда называю ПОКАЗАТЕЛЬСТВОМ, то есть рассуждение, не претендующее на роль строгого рассуждения, но приблизиться к "кухне математика". Итак, представьте две карты некой местности в разных масштабах, a - это расстояние между пунктами D и E, b - между E и F на одной карте, b и d - аналогичные расстояния на другой карте. В этом случае - это отношение масштабов карт. Ясно, что если мы сложим a и c, то получим длину маршрута от первого пункта через второй к третьему на первой карте, а сложив b и d - длину маршрута на второй карте. Понятно, что их отношение снова равно отношению масштабов карт.
Доказательство теоремы.
1. Пусть указанные отрезки пересекаются в точке , тогда треугольник оказывается разбит на 6 треугольников, занумерованных так, как указано на чертеже. Рассмотрим первую дробь
Поскольку числитель и знаменатель этой дроби являются основаниями треугольников и с общей высотой, дробь не изменится, если заменить числитель и знаменатель на площади указанных треугольников. А заметив, что на тех же основаниях стоят треугольники
и , можно заменить числитель и знаменатель и на их площади.
Поэтому
Воспользуемся теперь леммой: дроби не изменятся, если взять разность числителей и разность знаменателей:
Проведя аналогичное рассуждение для двух других дробей, получаем:
что и доказывает теорему Чевы в одну сторону.
2. Пусть не пересекаются в одной точке.Проведем через точку пересечения и
отрезок (точка расположена на стороне ).
По доказанному,
Если бы было выполнено
,
то
что невозможно при
(скажем, если точки на стороне
расположены в порядке
то числитель первой дроби больше числителя второй дроби, а знаменатель первой дроби меньше знаменателя второй, значит, первая дробь больше второй).
На этом доказательство завершается.
Замечание. Нетрудно получить тригонометрическую форму теоремы Чевы.
Воспользуемся для этого теоремой синусов:
Аналогично получаем
Отсюда получается новая формулировка теоремы Чевы.
Отрезки пересекаются в одной точке тогда и только тогда, когда
Примеры.
1) Медианы пересекаются в одной точке, поскольку все три дроби в основной формулировке теоремы Чевы равны 1.
2) Биссектрисы пересекаются в одной точке. Здесь удобнее воспользоваться теоремой Чевы в тригонометрической форме.
3) Высоты в остроугольном треугольнике пересекаются в одной точке. Опять легче воспользоваться тригонометрической формой.