Обозначим точку пересечения биссектрисы с АD буквой Н.
В ᐃ АВD биссектриса ВН ⊥ АD,⇒ ВН - высота,⇒
ᐃАВD равнобедренный. Поэтому ВН медиана и делит АD пополам.
АН=НD=84.
АД медиана, значит, ВD=DС. Так как АВ=ВД, то АВ=ВD=DС, и ВС=2АВ.
Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон.
В ᐃАВС биссектриса делит АС в отношении АВ:ВС=1:2 и АС=3 АE
Проведем ВР параллельно АС до пересечения с продолжением медианы АD в точке P.
ᐃ ВDР =ᐃ АDС т.к. ВD=DС, углы при D равны как вертикальные, ∠СВP=∠ВСА как накрестлежащие ⇒ ВР=АС=3 АE
Треугольники АНE и BНP прямоугольные и подобны по равенству углов
( ∠ ВPА=∠PАС как углы при параллельных АС и ВP и секущей ВС).
АE:ВP=НE:ВН=1:3
ВН=3НE
ВЕ=4НЕ
НE=ВE:4=42
ВН=3*42=126
Из ∆ АНE
АE=√(АН²+НE²)
АE=√(84²+42²)
Возвести большое число в квадрат и извлечь корень из него можно разложением числа на множители.
АE=√(6²14²+3²*14²)=√14²(6²+3²)=14*3√5=42√5
АС=3*42√5=126√5
Из ∆ АВН
АВ=√(ВН²+АН²)
АВ=√(9²*14²+6²*14²)=√14²(9²+6²)=14*√(9*13)=42√13
ВС=2АВ=84√13
Найдены все три стороны.
Sквадр.=a²
Sтреуг=ch/2
приравниваем
ch/2=a² откуда
1) ch=2a²
2)c+h=2b по условию
(c/2)²+h²=b² из прямоугольного желтого треуг., откуда
3) c²+4h²=4b²
теперь возводим 2) в квадрат и вместо ch подставляем 1)
(c+h)²=(2b)²
c²+2ch+h²=4b²
c²+4a²+h²=4b² теперь его левую часть приравниваем к левой части 3), т.к. в правых одинаковые 4b²
c²+4a²+h²= c²+4h² откуда h=2a√3/3
подставляем в 1) и находим с=а√3
подставляем во 2) и находим b
b=(5a√3)/6