38
Объяснение:
1) Так как по условию сказано, чо угол ACB=90 градусов, то получается, что треугольник ABC - прямоугольный.2) По условию сказано, что СD-медиана, то есть по особому свойству медианы в прямоугольном треугольнике получаем, что AD=DB=DC (Особое свойство медианы: медиана соединяет одну сторону с серединой другой стороны).3) Треугольники ADC и BDC равнобедренные, так как AD=DB=DC. А в равнобедренном треугольнике: если стороны равны, то и углы равны, то есть в треугольнике BDC: угол B = углу DCB = 52 градуса.4) Угол ACD = угол C - угол DCB;Угол ACD = 90 - 52 =38 градусов.ответ: Угол ACD = 38 градусов.
В равнобедренном треугольнике АВС с основанием АС, ВН - высота. Найдите ВН, если периметр треугольника АВС равен 48 см,
а периметр треугольника ВНС равен 32 см.
ответ или решение1
Так как треугольник ABC равнобедренный и его периметр равен 48, значит AB = BC, а AC = 48 - 2BC.
Высота BH делит AC пополам, соответственно, AH = HC = (48 - 2BC) / 2.
Периметр
треугольника BHC равен 32 см.
Составляем уравнение:
BC + (48 - 2BC) / 2 + BH = 32;
Решаем уравнение:
2BC / 2 + (48 - 2BC) / 2 + BH = 32;
(2BC + 48 - 2BC) / 2 + BH = 32;
48 / 2+BH = 32;
24 + BH = 32;
BH = 32-24;
BH = 8
ответ: длина высоты BH равна 8 сантиметра.
∠CED = 24°
Объяснение:
Смотри рисунок на прикоеплённом фото.
Треугольник CED: для простоты записи обозначим x половинки угла D и у - половинки угла С. Тогда
∠CED = 180 - 2х - 2у = 180 - 2(х + у)
∠DFK = 78° является внешним для ΔDCF, поэтому
∠DFK = х + у, то есть х + у = 78°
Тогда ∠CED = 180° - 2 · 78° = 24°