Треугольники АВС и ADC лежат в разных плоскостях, АВ=ВС=AD=CD=4 см, АС=6 см .BD=√21 см. Найдите угол между плоскостями АВС и ADC.
Объяснение:
1 ) Пусть ВН⊥АС .Тогда ВН-медиана ,тк ΔАВС-равнобедренный , и АН=НС = 3 см.
ΔВСН-прямоугольный , по т Пифагора ВН=√(СН²- ВС²)=√(16-9)=√7 (см).
2)Отрезок DH-медиана для ΔАDC, тк Н-середина АС.Тогда для ΔCDH по т. Пифагора DH=√7 см.
Медиана DH для ΔСDH является высотой по свойству медианы равнобедренного треугольника.
3)Тк.DH⊥AC,BH⊥AC , то ∠ВНD- линейный угол двугранного угла между плоскостями АВС и ADC.
По т. косинусов DB²=DH²+BH²-2*DH*BH*cos (∠BHD),
(√21)²= 2*(√7)²-2*√7*√7 *cos (∠BHD),
21=14-14*cos (∠BHD) , -14cos (∠BHD)=7 , cos (∠BHD)= - 1/2.
∠BHD=120° .
Так как окружность является описанной около треугольника , то его гипотенуза является диаметром . . Пусть одна часть равна х, тогда гипотенуза равна 5х, катет 3х, получим уравнение (5 х) в квадрате = 16 в квадрате + ( 3х)в квадрате - по теореме Пифагора.
Получаем 25 х в квадрате = 256 + 9х в квадрате.
16 х в квадрате = 256
х в квадрате = 16
х= 4 ; х= -4
-4 не удовлетворяет условию задачи.
Найдём гипотенузу 5х= 5*4 = 20, гипотенуза это диаметр, значит радиус 20:2 =10
ответ : 10 см
Рассмотрим один из треугольников, образованного пересечением диагоналей.
Он прямоугольный и его катеты равны √3 и 1.
По теореме Пифагора:
Значит,
∠BAD = 2 · 30° = 60°, т.к. диагонали ромба являются биссектрисами его углов.
∠ABO = 90° - 30° = 60°
∠ABC = 2 · 60° = 120°
∠ABC = ADC = 120° и ∠BAD = ∠BCD = 60° - как противоположные углы
ответ: 60°, 120°, 60°, 120.°.