Пусть дан треугольник ABC (рисунок прилагается). Проведем серединные перпендикуляры к AC и BC. Они пересекутся в точке O (они не могут быть параллельными, так как иначе AC и BC были бы параллельными, либо совпадали). Теперь опустим из O высоту OM на AB и докажем, что она является и медианой. Для треугольника BOC: OK - медиана и высота, значит BO = OC (треугольник BOC равнобедренный). Для треугольника AOC: OL - медиана и высота, значит AO = OC (треугольник AOC равнобедренный) Отсюда AO=BO. Значит OM - высота равнобедренного треугольника. Отсюда OM - медиана. Что и требовалось доказать.
Значит так: Надо знать что сторона лежащая против большого угла, самая большая сторона в треугольнике ( при условии что он не равностороний, в нашем случае не так) . Запишем неравенство: - всё это конечно углы. Понятно что если ∠P>∠N и ∠O>∠P то ∠O>∠N Отсюда следует, что самая длинная сторона, находится против большого ∠O (сторона NP) ∠P>∠N Значит против ∠Р лежит сторона, большая от стороны против угла N И меньшая стороне NP. В итоге получаем: NP>ON>OP Данное утверждение правильно, так как углы не равны, а значит и стороны не равны.
Найдите площадь описанной около окружности правильного треугольника,если площадь вписанного в эту окружность квадрата равна 2√3 см².
Дано: S₁=2√3 см² (площадь квадрата вписанной в окружность ).
S = S(Δ) -? S =pr = (3a/2)*r , где a длина стороны правильного треугольника , r - радиус вписанной в треугольник окружности: r = a√3/ 6 ⇒ a =6r /√3 = (2√3) *r . Значит S = (3*2√3 / 2)*r² = (3√3)*r² . С другой стороны по условию площадь квадрата вписанной в окружность S₁= ( 2 r*2r)/2 = 2r² ⇒ r² = S₁/2. * * *или по другому S₁=b² =(r√2)² =2r² * * * Следовательно : S = (3√3)*r² = (3√3)*S₁/2=(3√3)*2√3/2 = 9 (см² ) .
Теперь опустим из O высоту OM на AB и докажем, что она является и медианой.
Для треугольника BOC:
OK - медиана и высота, значит BO = OC (треугольник BOC равнобедренный).
Для треугольника AOC:
OL - медиана и высота, значит AO = OC (треугольник AOC равнобедренный)
Отсюда AO=BO. Значит OM - высота равнобедренного треугольника. Отсюда OM - медиана.
Что и требовалось доказать.