Найдите площадь описанной около окружности правильного треугольника,если площадь вписанного в эту окружность квадрата равна 2√3 см².
Дано: S₁=2√3 см² (площадь квадрата вписанной в окружность ).
S = S(Δ) -? S =pr = (3a/2)*r , где a длина стороны правильного треугольника , r - радиус вписанной в треугольник окружности: r = a√3/ 6 ⇒ a =6r /√3 = (2√3) *r . Значит S = (3*2√3 / 2)*r² = (3√3)*r² . С другой стороны по условию площадь квадрата вписанной в окружность S₁= ( 2 r*2r)/2 = 2r² ⇒ r² = S₁/2. * * *или по другому S₁=b² =(r√2)² =2r² * * * Следовательно : S = (3√3)*r² = (3√3)*S₁/2=(3√3)*2√3/2 = 9 (см² ) .
Пусть в прямоугольный треугольник ABC вписан квадрат CDEF (см. рисунок). Здесь AC=a, BC=b. Заметим, что диагональ CE квадрата является также биссектрисой исходного треугольника. Пусть CE=d, тогда CD=d√2/2 - сторона квадрата меньше диагонали в √2 раз. Периметр квадрата равен (d√2/2)*4=2√2d, а площадь равна (d√2/2)²=d²/2. Таким образом, чтобы найти периметр и площадь квадрата, достаточно выразить биссектрису прямого угла d через a и b.
Площадь прямоугольного треугольника равна половине произведения катетов, в нашем случае S=ab/2. Теперь воспользуемся другой формулой площади - S=1/2*a*b*sin(C), где a,b - соседние стороны треугольника, а sin(C) - угол между ними. Тогда S(ACE)=1/2*AC*CE*sin(45), S(BCE)=1/2*CE*BC*sin(45) (углы ACE и BCE равны 45 градусам). Так как S(ACE)+S(BCE)=S(ABC), мы можем записать уравнение с одним неизвестным CE: 1/2*AC*CE*sin(45)+1/2*CE*BC*sin(45)=ab/2 AC*CE*sin(45)+CE*BC*sin(45)=ab CE(AC+BC)=ab/sin(45) CE=ab/(a+b)sin(45) Таким образом, d=ab/(a+b)sin(45). Получаем, что периметр квадрата равен 2√2d=2√2ab/(a+b)sin(45)=4ab/(a+b), а площадь равна d²/2=(ab/(a+b)sin(45))²*1/2=a²b²/(a+b)².
Пусть в прямоугольный треугольник ABC вписан квадрат CDEF (см. рисунок). Здесь AC=a, BC=b. Заметим, что диагональ CE квадрата является также биссектрисой исходного треугольника. Пусть CE=d, тогда CD=d√2/2 - сторона квадрата меньше диагонали в √2 раз. Периметр квадрата равен (d√2/2)*4=2√2d, а площадь равна (d√2/2)²=d²/2. Таким образом, чтобы найти периметр и площадь квадрата, достаточно выразить биссектрису прямого угла d через a и b.
Площадь прямоугольного треугольника равна половине произведения катетов, в нашем случае S=ab/2. Теперь воспользуемся другой формулой площади - S=1/2*a*b*sin(C), где a,b - соседние стороны треугольника, а sin(C) - угол между ними. Тогда S(ACE)=1/2*AC*CE*sin(45), S(BCE)=1/2*CE*BC*sin(45) (углы ACE и BCE равны 45 градусам). Так как S(ACE)+S(BCE)=S(ABC), мы можем записать уравнение с одним неизвестным CE: 1/2*AC*CE*sin(45)+1/2*CE*BC*sin(45)=ab/2 AC*CE*sin(45)+CE*BC*sin(45)=ab CE(AC+BC)=ab/sin(45) CE=ab/(a+b)sin(45) Таким образом, d=ab/(a+b)sin(45). Получаем, что периметр квадрата равен 2√2d=2√2ab/(a+b)sin(45)=4ab/(a+b), а площадь равна d²/2=(ab/(a+b)sin(45))²*1/2=a²b²/(a+b)².
Дано: S₁=2√3 см² (площадь квадрата вписанной в окружность ).
S = S(Δ) -?
S =pr = (3a/2)*r , где a длина стороны правильного треугольника , r - радиус вписанной в треугольник окружности: r = a√3/ 6 ⇒
a =6r /√3 = (2√3) *r . Значит S = (3*2√3 / 2)*r² = (3√3)*r² . С другой стороны по условию площадь квадрата вписанной в окружность S₁= ( 2 r*2r)/2 = 2r² ⇒ r² = S₁/2. * * *или по другому S₁=b² =(r√2)² =2r² * * *
Следовательно : S = (3√3)*r² = (3√3)*S₁/2=(3√3)*2√3/2 = 9 (см² ) .
ответ : 9 см² .