Задачу можно решить двумя обычным и через sin))) Какой вам лучше, выбирайте сами.
Обозначим параллелограмм, как АВСД
ВН - высота, опущенная на сторону АД
АН = 4 см, НД = 2 см.
АД = АН + НД = 4 + 2 = 6 см.
параллелограмма = АД × ВН
Угол В = 135 - 90 = 45 градусов (т.к. ВН - высота, следовательно, она опущена под углом 90 градусов)
Рассмотрим треугольник АВН. Угол ВНА = 90 градусов, АВН = 45 градусов, следовательно угол ВАН = 180 - 90 - 45 = 45 градусов. Значит треугольник АВН - равнобедренный
Следовательно, ВН=АН=4 см.
S параллелограмма = 6 × 4 = 24
параллелограмма = АВ × АД × sin a
Sin а = 45 градусов = √2 делённое на 2
АВ² = √ВН² + АН² = √4² + 4² = √32
S параллелограмма = √32 × 6 × √2 делённое на 2 = 24
Дуга АС = 52°
Известно, что AB-диаметр окружности и угол CAB=64°.
Так как AB диаметр окружности и вписанный угол ACB опирается на диаметр AB, то ∠ACB=90°. Сумма внутренних углов треугольника 180°, то есть
∠ACB + ∠CAB + ∠CBA = 180°.
Отсюда находим
∠CBA = 180° - ∠ACB - ∠CAB = 180° - 90° - 64° = 26°.
Вписанный угол равен половине дуги, на которую он опирается. Тогда величина дуги АС, на которую опирается вписанный угол CBA, два раз больше чем величина вписанного угла ∠CBA. Поэтому
дуга АС = 2·26° = 52°.
В основании лежит правильный треугольник; его площадь:
S=a²√3/4=(6√3)²·√3/4=108√3/4=27√3.
V=27√3·6√3/3=27·6=162 (ед³) - это ответ.