проведём диагональ ас, ттогда треугольники асд и авс равнобедренные т к по условию их боковые стороны равны.т.к угол д=39 градусам то угол сад+асд=180-39=141 градус, тогда угол асд=сад=141: 2=70,5 градусам.
рассмотрим треуг. авс:
т.к угол в равен 3 гр,то вас+вса=180-3=177 градусов,по теореме о сумме углов треуг.
т к треуг равнобедренный, то его углы при основании равны,тогда угол вас=вса=177: 2=88,5 градусов
тогда угол а равен сумме углов вас и сад т.е 88.5 градусов+70.5 градусов=159 градусов
ответ: угол а=159 градусов
Задача: Найти площадь прямоугольного треугольника, в котором высота, опущенная из вершины прямого угла на гипотенузу, равна 8 см, и одна из проекций катета на гипотенузу равна 4 см.
Дан ΔABC, ∠C = 90°, CH = 8 см — высота, AH = 4 см — проекция катета AC.
Из определения, высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу.
Тогда длина гипотенузы будет равна:
Подставим значения в формулу площади треугольника:
ответ: Площадь треугольника равна 80 см².
Если надо найти угол ВМН, то =>
МН и АС параллельны по этому углы ВМН и А равны =50