Высота правильной четырёхугольной пирамиды равна 12 см, а сторона основания равна 24 см. Вычисли двугранный угол при основании.
——————————————————
Основание правильной четырехугольной пирамиды – квадрат.
Все боковые грани правильной пирамиды образуют с плоскостью основания равные углы, а высота проходит через центр основания, который является центром вписанной и описанной около основания окружностей.
Двугранный угол здесь образован радиусом вписанной окружности и апофемой, как отрезками. перпендикулярными ребру основания в одной точке (по т. о трех перпендикулярах).
Радиус вписанной в квадрат окружности равен половине его стороны.
r=24:2=12 (см)
Соединив основание апофемы с центром основания ( основанием высоты пирамиды), получим прямоугольный треугольник.
При этом катеты- высота пирамиды и половина стороны основания - равны 12 см.
Следовательно, треугольник - равнобедренный. Острые углы равнобедренного прямоугольного треугольника равны 45º.⇒ Искомый угол равен 45º.
из соответствующих координат точки_конца вектора вычитаются координаты точки_начала вектора.
вектор_AB={3-6; 2-(-4); 3-2} |AB|=√(9+36+1) = √46
вектор_BC={3-3; -5-2; -1-3} |BC|=√(0+49+16) = √65
вектор_AC={3-6; -5-(-4); -1-2} |AC|=√(9+1+9) = √19
длина вектора = корень квадратный из суммы квадратов координат))
в треугольнике бОльшая сторона - это ВС
по обратной т.Пифагора: если квадрат стороны треугольника = сумме квадратов двух других сторон, то треугольник прямоугольный))
65 = 46+19
ЧиТД