М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Nenormalnyi
Nenormalnyi
01.05.2021 18:14 •  Геометрия

Вугол с величиной 75° вписана окружность, которая касается сторон угла в точках а и в, где о — центр окружности. найдите угол аов. ответ дайте в градусах.

👇
Ответ:
НикитаТим
НикитаТим
01.05.2021
Угол А и В прямые,т.к. ОА и ОВ - радиусы, проведённые к касательным.СО - биссектриса,т.к. равноудалена от сторон угла.
∠ОСВ = 75°/2= 37,5°
Найдём  ∠СОВ из прямоугольного треугольника СОВ ( по сумме углов треугольника):
180°-90°-37,5°=52,5°
Найдём ∠АОВ:
∠ АОВ=2∠СОВ
∠ АОВ = 2*52,5°=105°
ответ: ∠ АОВ = 105°
4,6(72 оценок)
Открыть все ответы
Ответ:
Keks200220
Keks200220
01.05.2021

Сумма 4-х углов четырехугольника равна 360. Поскольку в паралелограмме противоположные углы равны, значит сумма двух соседних углов равна 180. Отнимаем 46 и делим на 2, получаем один угол 67, второй (+46) равен 113.

можно так:

Такие углы не могут быть противолежащими, так как они не равны. Значит, они прилежащие и их сумма равна 180°. Пусть один из углов равен х, тогда другой равен х+46°, по условию. Следовательно                                                х+(х+46)=180

2х+46=180

2х=180-46

2х=134

х=67-первый,а второй  х+46°=67+46=113 градусов

 

4,7(5 оценок)
Ответ:
zhenya270346
zhenya270346
01.05.2021
Касательная к окружности — прямая, имеющая с окружностью единственную общую точку.Понятие касательной к окружности и основные свойства касательной проиллюстрированы ниже на рисунке.. Угол  равен , где  — центр окружности. Его сторона  касается окружности. Найдите величину меньшей дуги  окружности, заключенной внутри этого угла. ответ дайте в градусах.Касательная к окружности перпендикулярна радиусу, проведенному в точку касания. Значит, угол  — прямой. Из треугольника  получим, что угол  равен  градуса. Величина центрального угла равна угловой величине дуги, на которую он опирается, значит, величина дуги  — тоже  градуса.ответ: .. Найдите угол , если его сторона  касается окружности,  — центр окружности, а большая дуга  окружности, заключенная внутри этого угла, равна . ответ дайте в градусах.Это чуть более сложная задача. Центральный угол  опирается на дугу , следовательно, он равен  градусов. Тогда угол  равен . Касательная перпендикулярна радиусу, проведенному в точку касания, значит, угол  — прямой. Тогда угол  равен .ответ: .. Хорда  стягивает дугу окружности в . Найдите угол  между этой хордой и касательной к окружности, проведенной через точку . ответ дайте в градусах.Проведем радиус  в точку касания, а также радиус . Угол  равен . Треугольник  — равнобедренный. Нетрудно найти, что угол  равен  градуса, и тогда угол  равен  градусов, то есть половине угловой величины дуги .Получается, что угол между касательной и хордой, проведенной через точку касания, равен половине угловой величины дуги, заключенной между ними.. Через концы ,  дуги окружности в  проведены касательные  и . Найдите угол . ответ дайте в градусах.Рассмотрите четырехугольник . Сумма углов любого выпуклого четырехугольника равна . Углы  и  и  — прямые, угол  равен , значит, угол  равен  градусов.ответ: .. К окружности, вписанной в треугольник , проведены три касательные. Периметры отсеченных треугольников равны , , . Найдите периметр данного треугольника.Вспомним еще одно важное свойство касательных к окружности: 
Отрезки касательных, проведенных из одной точки, равны. 
Периметр треугольника — это сумма всех его сторон. Обратите внимание на точки на нашем чертеже, являющиеся вершинами шестиугольника. Из каждой такой точки проведены два отрезка касательных к окружности. Отметьте на чертеже такие равные отрезки. Еще лучше, если одинаковые отрезки вы будете отмечать одним цветом. Постарайтесь увидеть, как периметр треугольника  складывается из периметров отсеченных треугольников.ответ: .Все эти задачи встречаются в Банке заданий ФИПИ под номером . А вот одна из сложных задач :. Около окружности описан многоугольник, площадь которого равна . Его периметр равен. Найдите радиус этой окружности.Обратите внимание — в условии даже не сказано, сколько сторон у этого многоугольника. Видимо, это неважно. Пусть их будет пять, как на рисунке. 
Окружность касается всех сторон многоугольника. Отметьте центр окружности — точку  — и проведите перпендикулярные сторонам радиусы в точки касания.Соедините точку  с вершинами . Получились треугольники  и . 
Очевидно, что площадь многоугольника . 
Как вы думаете, чему равны высоты всех этих треугольников и как, пользуясь этим, найти радиус окружности?
4,7(89 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ