Дано:
Прямоугольный треугольник
Меньший катет-3
Больший катет -4
Найти V-?
S полной поверхности-?
Решение
Тело вращения - прямой конус, где больший катет - высота (Н) конуса, меньший катет - радиус (R) основания конуса, гипотенуза треугольника - образующая (L) конуса.
Сначала нацдем по теореме Пифагора образующую
R² + H² = L²
3² + 4² = L²
L² = 9 + 16
L³ = 25
L = 5 (см)
Площадь боковой поверхности конуса равна произведению числа π на радиус окружности основания и на длину образующей конуса
S = π * R * L
S = π * 3 * 5 = 15π
Объем конуса равен одной трети произведения числа π на квадрат радиуса основания на высоту.
V = 1/3 * π * R² * H
V = 1/3 * π * 3² * 4 = 1/3 * 9 * 4 * π = 12π
ответ: S=15п, V=12п
Пусть это 2к и 3к.
Обозначим АН = х.
По свойству биссектрисы 2к/3к = х/6,
Отсюда получаем х = АН = (6*2)/3 = 4 см.
Теперь можно найти высоту ВН:
ВН = √(6²-4²) = √(36-16) = √20 = 2√5 см.
Площадь S = (1/2)*АС*ВН = (1/2)*3√5*2√5 = 3*5 = 15 см².