Сточки s к площади альфа проведено две уклонные sa и sb,и перпендикуляр so. уголаso= 45 градусов,угол bso=60 градусов,so=12 см,найти проекции уклонных на площадь альфа
Пусть АВС - равнобедренный треугольник и АВ=ВС. В равнобедренном треугольнике боковые стороны равны. Значит АВ=ВС=20 см (8+12). Биссектриса делит сторону на отрезки, пропорциональные прилежащим сторонам (свойство биссектрисы). Тогда АС/АВ=12/8, отсюда АС=20*12/8=30 см. Зная три стороны, по формулам радиуса вписанной окружности найдем этот радиус. 1. Радиус равен: r=√[(p-a)(p-b)(p-c)/p], где a,b,c - стороны треугольника, р - полупериметр. В нашем случае р=(20+20+30)/2=35см r=√(15*15*5/35) =15/√7 или 15√7/7 см. 2. Для равнобедренного треугольника r=(b/2)*√[(2a-b)/(2a+b)], где а - боковая сторона, b - основание. Тогда r=15√(10/70)=15/√7=15√7/7 см. ответ: r=15√7/7 см.
1)Окружность вписана в треугольник, если она касается всех его сторон. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности. Центром вписанной в треугольник окружности является точка пересечения биссектрис треугольника. От этой точки нужно провести перпендикуляр к любой стороне и это расстояние будет радиусом вписанной в треугольник окружности. 2) Окружность называется описанной вокруг треугольника, когда все его вершины лежат на окружности. Центром описанной окружности является точка пересечения срединных перпендикуляров к сторонам треугольника. Радиусом такой окружности будет расстояние от этого центра до вершин треугольника. 3) Вневписанная окружность — окружность, касающаяся одной стороны треугольника и продолжения двух других его сторон.Центр вневписанной окружности лежит на пересечении биссектрисы одного внутреннего угла и биссектрис внешних углов при двух других вершинах. Радиусом ее будет отрезок перпендикуляра, проведенного из центра окружности к стороне треугольника или к ее продолжению.Вневписанных окружностей у треугольника может быть 3 - к каждой стороне.
Треугольники ASO и SOB прямоугольные. Т. к. <ASO=45,то <A=90-45=45. И тогда АО =SО=12.
В треугольнике SBO <BSO=60. Тогда <В=90-60=30. По теореме катет, лежащий против угла в 30гр. = половине гипотенузы. Т. е. OS=1/2SB.
SB=12*2=24. По теореме Пифагора ОВ^2=576-144=432. ОВ=12 корней из 3.