Тут, наверное, площадь поверхности шара, которая равна S=4\pi*r^2, где r - радиус шара. Остается только найти r. Пусть сторона куба равна а. Тогда V=a^3. По условию задачи V=125. Тогда 125=a^3. Тогда а=5. Теперь можно рассмотреть сечение куба, где у шара будет свой диаметр. В сечении получаем квадрат со стороной 5, внутрь которого вписана окружность. Очевидно, что диаметр этой окружности совпадает с длиной стороны квадрата, то есть d=5. d=2r, 2r=5, r=2,5. Подставим в вышеуказанную формулу. S=4*\pi*2,5^2. S=25*\pi
1. Проводите на бумаге прямую "а". 2. Откладываете на этой прямой отрезок АВ (замерив данный Вам катет циркулем), равный данному катету. 3. От точки А на этой же прямой откладываете отрезок АА1, равный данному катету, но в противоположную сторону. 4. Из точек А и В циркулем проводите дуги радиусом, БОЛЬШИМ АА1 и получаете точку пересечения этих дуг М. 5. Соединяете точки А и М прямой - это будет перпендикуляр к прямой в точку А, то есть перпендикуляр, содержащий второй катет. 6. Теперь от точки В строите данный Вам острый угол. Для этого на данном нам угле радиусом R проводим окружность и получаем точки Р и К. Этим же радиусом проводим окружность с центром в точке В на прямой "а". Получаем точку Р1. Замеряем циркулем расстояние РК на данном нам угле. Это радиус r. Из точки Р1 (как центр) на прямой "а" радиусом r проводим окружность и в точке пересечения двух окружностей получаем точку К1. Через точки В и К1 проводим прямую "b". Получили данный нам угол В. 7. Пересечение прямой b с перпендикуляром и даст Вам третью точку С искомого треугольника. Получили искомый треугольник АВС.
4см, 10 см -- основания трапеции. (Диагональ разбивает трапецию на 2 треугольника, их средние линии 2 и 5см, значит их основания, а они являются трапеции равны 4 и 10 см). В трапеции опустим высоты из вершин тупых углов. Они разбивают большее основание на отрезки 3, 4, 3 см. Высоты, опущенные из вершин тупых углов разбивают трапецию на 2 равных прямоугольных треугольника и прямоугольник. Гипотенуза прямоугольного треугольника равна 6, катет 3,значит , угол образованный высотой и боковой стороной 30 градусов, значит угол при большем основании 60 градусов, а тупые углы по 120 градусов
S=4*\pi*2,5^2.
S=25*\pi