Острый угол равнобокой трапеции равен 60 градусов. сумма длин ее боковых сторон и меньшего основания равна 24 корень из 3 см.найти высоту и площадь трапеции если ее диагональ является биссектрисой угла при основании
Найдём сначала, чем ограничена данная фигура. (На самом деле эта фигура -- круг радиуса 1 с центром в точке (1,0), и её площадь равна pi).
Решим уравнение 1+sqrt(2x-x^2) = 1-sqrt(2x-x^2). Его корни: x = 0, x = 2. Поэтому данная фигура заключена между кривыми 1+sqrt(2x-x^2) и 1-sqrt(2x-x^2) на отрезке x в [0, 2].
Тогда её площадь: int_{x=0}^2 ((1+sqrt(2x-x^2)) - (1-sqrt(2x-x^2))) dx = 2* int_{x=0}^2 sqrt(2x-x^2) dx Теперь осталось найти интеграл. Можно, собственно, дальше мучительно долго искать неопределённый интеграл: 2 * integral sqrt(2 x-x^2) dx =2 * (sqrt(-(x-2) x) (sqrt(x-2) (x-1) sqrt(x)-2 log(sqrt(x-2)+sqrt(x/(2 sqrt(x-2) sqrt(x))+constant И затем найти разность при x=2 и x=0. А можно заметить, что фигура -- это круг, и вычислить определённый интеграл сразу, поставив в ответ pi,
ВС||АВ. ∠ВСА=∠САD- накрестлежащие при пересечении параллельных прямых секущей. ∠ВАС=∠САD ( АС - биссектриса) ⇒ АВ=ВС=СD
Каждая из этих сторон равна 24√3:3=8√3 см
Один из вариантов решения:
AD=CD:sin30°=2•8√3=16√3 см
S ∆ ACD=CD•AD•sinCDA:2
S=4√3•16√3•0,5:2=48 см²
S ∆ACD=h•AD:2 ⇒h=2S:AD=96:16√3=2√3 см
Площадь трапеции равна произведению полусуммы оснований на высоту.
S ABCD=0,5•(BC+AD)•h=12√3•2√3=108 см²