В условии ошибка: ВС ║AD, а не АС, так как параллельные прямые не могут проходить через одну точку.
BF = DE по условию,
∠AED = ∠CFB по условию,
∠CBF = ∠ADE как накрест лежащие при пересечении параллельных прямых ВС и AD секущей BD, ⇒
ΔCBF = ΔADE по стороне и двум прилежащим к ней углам.
Значит CF = AE,
BE = BF - EF, DF = DE - EF, а так как BF = DE, то и BE = DF,
∠CFD = ∠AEB как смежные с равными углами (∠AED = ∠CFB по условию),
значит ΔCFD = ΔAEB по двум сторонам и углу между ними.
Тогда ∠АВЕ = ∠CDF, а эти углы - накрест лежащие при пересечении прямых АВ и CD секущей BD, значит АВ║CD.
По условию ∠АОС+∠ВОD=5•(∠BOC+∠AOD)
Окружность содержит 360°
∠АОС+∠ВОD=5•(∠BOC+∠AOD)⇒
5•(∠BOC+∠AOD)+(∠BOC+∠AOD)=6•(∠BOC+∠AOD)
6•(∠BOC+∠AOD)=360°
∠BOC+∠AOD=360°:6=60°
Так как ∠BOC=∠AOD⇒ ∠BOC=60°:2=30°
* * *
Так как в решении участвуют пары равных углов, тот же результат будет получен, если для решения возьмем не всю окружность, а её половину, т.е. развернутый угол АОВ, в котором ∠АОС=5∠ВОС.