Доказательство следует непосредственно из равенства сторон построенного треугольника заданным отрезкам.
1. Поскольку CO – биссектриса угла ACB, а треугольник ABC – равнобедренный, то CO ⊥ AB. Углы ABO и BCO равны, так как каждый из них в сумме с углом BOC составляет 90°. Следовательно, ∠ACB = 2∠BCO = 2·40° = 80°.
ответ: 80°.
2. Перпендикуляр, проведенный из центра окружности к хорде, делит её пополам. ⇒
АС=ВС=20:2=10
ОА=ОВ - радиусы. ⇒∆ АОВ- равнобедренный.
Углы при основании равнобедренного треугольника равны.
∠ОВА=∠ОАВ=45°⇒ ∠АОВ=90°
ОС⊥АВ. ОС- высота, медиана и биссектриса прямоугольного ∆ АОВ и делит его на два равных равнобедренных.
СО=АС=СВ=10 см
ответ. 10 см.
3. Вот так. Только во второй задаче бери радиус больше половины отрезка
2) АД- биссектриса угла А, значит угол САД= угол ВАД=50:2=25
3) угол ДВА-смежный с углом АВЕ(внешний угол угла В), значит угол ДВА=180-140=40
4) Сумма углов треугольника равна 180 градусам; угол ДАВ=25, угол В=40, значит угол АДВ= 180-(25+40)= 180-65=115
ответ: 25 градусов; 40 градусов; 115 градусов