ответ:24,3 см
Объяснение: Дано: EFTM - прямоугольник;
ЕТ=16,2 см; ∠30°.
Найти: Р (ΔEFO)
1. Рассмотрим ΔЕТМ - прямоугольный.
Катет, лежащий против угла 30°, равен половине гипотенузы.
⇒ ТМ = ЕТ : 2 = 16,2 : 2 = 8,1 (см)
Противоположные стороны прямоугольника равны.
⇒ EF = TM = 8,1 см.
Диагонали прямоугольника равны.
⇒ЕТ = FM = 16,2 см.
Диагонали прямоугольника точкой пересечения делятся пополам.
⇒ FO = OE = 16,2 : 2 = 8,1 (см)
Периметр - сумма длин всех сторон.
⇒ Р (ΔEFO) = FO + OE + EF =8,1 +8,1 + 8,1 = 24,3 (см)
а) Вписанный угол равен половине центрального, опирающегося на ту же дугу. ∠MAB - вписанный, ∠MOB - центральный, оба опираются на дугу MB.
∠MOB=2∠MAB =40° *2 =80°
∠MOB - равнобедренный (OM=OB, радиусы)
∠OMB=∠OBM =(180°-∠MOB)/2 =50°
б) Угловая величина дуги равна опирающемуся на неё центральному углу.
∪MB=∠MOB =80°
∪AB=∠AOB =180° (∠AOB - развернутый угол. Диаметр делит окружность на две равные дуги.)
∪AM=∪AB-∪MB =180°-80° =100°
∪MB < ∪AM < ∪AB
в) Вписанный угол равен половине дуги, на которую опирается. Вписанный угол AMB опирается на диаметр AB, а значит на дугу 180°.
∠AMB=180°/2 =90° (Вписанный угол, опирающийся на диаметр - прямой)
AM⊥MB