1)У этих треугольников сторона AC - общая. Также, в равнобедренном треугольнике углы при основании равны, а значит два угла CAK и PCA равны. Углы KCA и СAP тоже равны, так как биссектриса разбивает угол на две равные части. Отсюда получаем, равные треугольники по второму признаку равенства треугольников.
2)ABC=2DAB-28*. (Так как величина внешнего угла треугольника равна сумме величин двух внутренних углов, несмежных с ним.)
ABC=180*-2(180*-BDA-DAB)=180*-360*+2BDA+2DAB. (Так как ABC и ABD*2 (биссектриса делит угол пополам) смежные углы, а сумма величин всех внутренних углов треугольника BDA равна 180*.)
Приравниваем эти два выражения и получаем:
2DAB-28*=180*-360*+2BDA+2DAB;
152*=2BDA;
BDA=76*.
ответ 76*.
1)У этих треугольников сторона AC - общая. Также, в равнобедренном треугольнике углы при основании равны, а значит два угла CAK и PCA равны. Углы KCA и СAP тоже равны, так как биссектриса разбивает угол на две равные части. Отсюда получаем, равные треугольники по второму признаку равенства треугольников.
2)ABC=2DAB-28*. (Так как величина внешнего угла треугольника равна сумме величин двух внутренних углов, несмежных с ним.)
ABC=180*-2(180*-BDA-DAB)=180*-360*+2BDA+2DAB. (Так как ABC и ABD*2 (биссектриса делит угол пополам) смежные углы, а сумма величин всех внутренних углов треугольника BDA равна 180*.)
Приравниваем эти два выражения и получаем:
2DAB-28*=180*-360*+2BDA+2DAB;
152*=2BDA;
BDA=76*.
ответ 76*.
Пусть меньший из них =х,тогда больший =2х
Составим уравнение:
х+2х=90°
3х=90°
х=30°
2х=60°
ответ:30° и 60°