Через середины m и n ребер ad и cc1 параллелепипеда abcda1 b1 c1 d1 проведена плоскость параллельно диагонали db1 . постройте сечение параллелепипеда этой плоскостью. в каком отношении она делит ребро bb1 ?
Построение. Диагональ В1D параллелепипеда лежит в плоскости АВ1С1D. Точка М также лежит в этой плоскости, так как принадлежит прямой АD. проведем через точку М в плоскости АВ1С1D прямую, параллельную B1D до пересечения с продолжением ребра С1В1 в точке Р. Точка Р принадлежит плоскости, содержащей грань ВВ1С1С. Этой же плоскости принадлежит точка N. Проведем прямую РN и отметим точки пересечения этой прямой с ребром ВВ1 (точка Q) и продолжением ребра ВС (точка Т). Проведем прямую через точки М и Т и на пересечении этой прямой с ребром СD отметим точку R, а на пересечении ее с прямой АВ - точку К. Через точки К и Q проведем прямую и на пересечении этой прямой и ребра АА1 отметим точку S. Итак, все полученные точки принадлежат плоскости, параллельной прямой B1D, поскольку прямая МР, принадлежащая этой же плоскости, параллельна В1D. Следовательно, пятиугольник MSQNR - искомое сечение. Чтобы определить, в каком отношении Точка Q делит ребро ВВ1, надо рассмотреть треугольники NPC1 и QPB1, лежащие в плоскости ВРС1С, содержащей грань ВВ1С1С. Эти треугольники подобны (так как QB1 параллельна C1N, а <P - общий. Коэффициент их подобия равен k=1:3 (так как В1С1=2РВ1, поскольку РВ1=МD, MD=0,5*AD, AD=B1C1 - противоположные ребра параллелепипеда АВ1С1D). Итак, QB1=(1/3)*C1N, C1N=(1/2)*CC1=(1/2)*BB1 => QB1=(1/6)*BB1, то есть BQ/QB1=5/1. Это ответ.
2) Пусть дан треугольник АВС: АВ=ВС, Обозначим АВ=ВС= 5х, тогда высота ВК= 4х. АК=КВ=6 см По теореме Пифагора из прямоугольного треугольника АВК: (5х)²=(4х)²+6² 25х²-16х²=36, 9х²=36,х²=4,х=2 Значит АВ=ВС=10 см. Р=АВ+ВС+АС=10+10+12=32 см.
1) Пусть дан треугольник АВС: АВ=ВС,
Обозначим АС=2х, тогда АВ=ВС=(128-2х):2=64-х АК=ВК=х По теореме Пифагора из прямоугольного треугольника АВК: АВ²=АК²+ВК², (64-х)²=х²+32², 128х=64²-32², 128х=(64-32)·(64+32), 128х=32·96, 4х=96, х=24, значит АС=48 см, АВ=ВС=(128-48)/2=40 ответ. стороны треугольника 40, 40, 48
На чертеже точки касания N и N1 изображены совпадающими, но это еще надо доказать. Поэтому СНАЧАЛА я не считаю их совпадающими. То есть окружность O1 касается AC в точке N, а окружность O2 - в точке N1 (слова "с центром" дальше буду опускать, если и так ясно). Для треугольника ABC точки касания с O1 делят стороны на три отрезка AN, CN и еще один (точнее, два равных) из вершины B. Я обозначу его например буквой x. Тогда очевидно AN + CN = AC; AN + x = AB; CN + x = BC; Если вычесть из второго третье, получится AN - CN = AB - BC; если теперь сложить это с первым, то AN = (AC + AB - BC)/2; Точно так же для треугольника ACD получается AN1 = (AC + AD - CD)/2; и нигде не предполагается, что AN = AN1; это надо доказать. Весь четырехугольник ABCD является ОПИСАННЫМ, то есть AD + BC = AB + CD; или AD - CD = AB - BC; или AC + AD - CD = AC + AB - BC; то есть AN = AN1, и точки N и N1 совпадают, это просто одна точка N. Последствия этого очень велики. :) Окружности O1 и O2 касаются, AC является общей касательной, проведенной в точке касания N окружностей O1 и O2, и линия центров O1O2 перпендикулярна AC. Важно! - пока нигде не использовано, что ABCD - трапеция! Этот результат справедлив для любого выпуклого описанного четырехугольника. Поэтому (см. чертеж) ∠KO1O2 = ∠CAD (стороны углов перпендикулярны), и треугольники KO1O2 и ACP подобны. CP - высота трапеции. Она равна CP = 2R = 40; сумма радиусов окружностей равна O1O2 = 25; отсюда легко найти KO1 = 40 - 25 = 15; получился "египетский" треугольник :) то есть KO2 = 20; Ну, и из подобия KO1O2 и ACP AC = 50 (поскольку СP = 2*KO2 :) )
в точке Р. Точка Р принадлежит плоскости, содержащей грань ВВ1С1С. Этой же плоскости принадлежит точка N. Проведем прямую РN и отметим точки пересечения этой прямой с ребром ВВ1 (точка Q) и продолжением ребра ВС (точка Т). Проведем прямую через точки М и Т и на пересечении этой прямой с ребром СD отметим точку R, а на пересечении ее с прямой АВ - точку К. Через точки К и Q проведем прямую и на пересечении этой прямой и ребра АА1 отметим точку S.
Итак, все полученные точки принадлежат плоскости, параллельной прямой B1D, поскольку прямая МР, принадлежащая этой же плоскости, параллельна В1D. Следовательно, пятиугольник MSQNR - искомое сечение.
Чтобы определить, в каком отношении Точка Q делит ребро ВВ1, надо рассмотреть треугольники NPC1 и QPB1, лежащие в плоскости ВРС1С, содержащей грань ВВ1С1С.
Эти треугольники подобны (так как QB1 параллельна C1N, а <P - общий. Коэффициент их подобия равен k=1:3 (так как В1С1=2РВ1, поскольку РВ1=МD, MD=0,5*AD, AD=B1C1 - противоположные ребра параллелепипеда АВ1С1D).
Итак, QB1=(1/3)*C1N, C1N=(1/2)*CC1=(1/2)*BB1 => QB1=(1/6)*BB1,
то есть BQ/QB1=5/1. Это ответ.