Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
Уравнение касательной в точке (x1, y1) к эллипсу (x/a)^2 + (y/b)^2 = 1; x*x1/a^2 + y*y1/b^2 = 1; Вывести его проще простого - дифференциал в точке (x1, y1) равен 0, заменяется dx = x - x1; dy = y - y1; получается (x1/a^2)*(x - x1) + (y1/b^2)*(y - y1) = 0; откуда сразу получается нужное уравнение. Касательная в точке (x2, y2) на втором эллипсе (x/с)^2 + (y/d)^2 = 1; x*x2/c^2 + y*y2/d^2 = 1; Эти две прямые должны совпадать. То есть x2/c^2 = x1/a^2; y2/d^2 = y1/b^2; если переписать уравнения эллипсов так a^2*(x1/a^2)^2 + b^2*(y1/b^2)^2 = 1; c^2*(x2/c^2)^2 + d^2*(y2/d^2)^2 = 1; и обозначить u = (x1/a^2)^2 = (x2/c^2)^2; v = (y1/b^2)^2 = (y2/d^2)^2; то получается просто линейная система 2х2; a^2*u + b^2*v = 1; c^2*u + b^2*v = 1; У этой системы единственное решение (если есть, конечно, и не просто есть, а должно быть положительно определено, то есть u > 0; v > 0). Уравнения всех ЧЕТЫРЕХ общих касательных получаются потом перебором знаков перед корнями. То есть уравнения касательных будут +-x*√u +- y*√v = 1; Вот вся теория. Как это выглядит для этой задачки. a^2 = 6; b^2 = 1; c^2 = 4; d^2 = 9; 6*u + v = 1; 4*u + 9*v = 1; u = 4/25; √u = 2/5; v = 1/25; √v = 1/5; +-x*2 +- y = 5; вроде так. (ну, в смысле, 2x + y = 5; 2x - y = 5; -2x + y = 5; -2x - y = 5; ясно, что эти прямые образуют ромб). Решение не получилось бы, если бы эллипсы не пересекались.
8^2 + 15^2 = 64 + 225 = 289
Сторона ромба ---корень из 289 = 17