Если на одной из двух прямых отложить несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки.
Пусть дан отрезок ВС.
От конца В отрезка начертить луч и на нем от В отметить через равные промежутки 5 точек. Из пятой точки провести прямую через т.С отрезка ВС и провести параллельно ей прямые, пересекающие отрезок ВС. Этими прямыми ВС будет разделен на 5 равных частей. Любые две соседние части равны 2/5 исходного отрезка ВС.
Длина картинки с окантовкой: 2х + 17 , где х - ширина окантовки.
Тогда: (2х + 12)(2х + 17) = 414
4х² + 24х + 34х + 204 = 414
4х² + 58х - 210 = 0
2х² + 29х - 105 = 0 D = b²-4ac = 841 + 840 = 1681 = 41²
x₁ = (-b+√D)/2a = (-29+41)/4 = 3 (см)
x₂ = (-b-√D)/2a = (-29-41)/4 = -17,5 - не удовлетворяет условию.
Таким образом, длина картинки с окантовкой: a = 2*3+12 = 18 (см)
ширина картинки с окантовкой: b = 2*3+17 = 23 (см)
Общая площадь: S = ab = 18*23 = 414 (см)
ответ: ширина окантовки 3 см.