Обозначим О - центр окружности; АВ - касательная; АС -секущая; СD - внутренний отрезок секущей (рисунок в приложении). По условиям задачи: АВ+АС=30 см AB-CD=2 Если из точки, лежащей вне окружности, проведены касательная и секущая, то квадрат длины касательной равен произведению секущей на ее внешнюю часть: АВ²=АС*DA Выразим: AC=30-AB CD=AB-2 Пусть АВ=х см, тогда АС=30-х СD=x-2 АС=DA-DC=30-x-x+2=32-2x АВ²=АС*DA=(30-x)*(32-2x) x²=(30-x)*(32-2x) x²=960-32х-60х+2х² 2х²-х²-92х+960=0 х²-92х+960=0 D=b²-4ac=(-92)²-4*1*960=8464-3840=4624 (√4624=68) x₁=(-b+√D)/2a=(-(-92)+68)/2*1=160/2=80 - не соответствует условиям задачи x₂=(-b-√D)/2a=(-(-92)-68)/2*1=24/2=12 АВ=12 см АС=30-АВ=30-12=18 см ответ: касательная равна 12 см, секущая - 18 см.
Если третья сторона будет=1 см, то не получится неравенство: 1см+1см= 2 см, тогда 3см>2 см, а должно быть<. Если третья сторона = 2 см, то неравенство опять не получится: 2+1=3, тогда 3=3, так тоже не может быть, т.к. одна из сторон треугольника должна быть меньше суммы двух других сторон. Если третья сторона =3 см, тогда 1+3=4, 3<4, неравенство выполняется, 3+3=6, 3<6- неравенство получается. Возьмем 4 см: 3+1=4, 4=4- не получается, значит и в последующих числах не получится. ответ: 3 см
Решение
∠A₁ + ∠B₁ =258 °; (∠A₁ и ∠B₁ внешние углы смежные ∠A и ∠B)
(180° -∠A) +(180° -∠B) =258° ;
360° - (∠A +∠B) =258° ;
∠A +∠B = 360° - 258° ;
∠A +∠B =102 ° ;
∠C = 180° - (∠A +∠B) = 180° - 102°=78°.
ответ : 78°.
Удачи Вам !