Цитаты: "Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). Линейный угол - это угол, образованный пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. Таким образом, чтобы измерить двугранный угол, можно взять любую точку на его ребре и перпендикулярно ребру провести из неё лучи в каждую из граней.
АВ- двугранный угол, точка М удалена от плоскостей на расстояние m, то есть МС=МD=m. DК и CK перпендикулярны AB (теорема о трех перпендикулярах). <DKC- линейный угол данного нам двугранного угла, равного 120*. Проведем МК. Поскольку точка М равноудалена от сторон угла DKC, МК - биссектриса этого угла и <МКС=120° /2=60°.
В прямоугольном треугольнике КМС <MKC=60*, значит <KМC=30°. Следовательно КМ=2КС и по Пифагору 4КС²-КС²=m². Тогда КС=m/√3.
Поскольку МК=2КС , МК=2m/√3 или МК=2m√3/3.
Объяснение:
Задача на применение формулы объема прямой призмы - он равен площади основания т.е. прямоугольной трапеции на высоту.
Высота призмы является боковым ребром, т.к. призма прямая, а высотой трапеции, лежащей в основании, есть 3, т.к. если от большего основания трапеции отнять меньшее основание, получим отрезок, отсекаемый высотой, опущенной из вершины тупого угла на большее основание. из прямоугольного треугольника с гипотенузой - бок. стороной трапеции, равной 5 и катетом, равным 4, находим высоту трапеции √(5²-4²)=√9=3
Площадь трапеции равна произведению полусуммы оснований на высоту, т.е.
(8+4)*3/2=18
Тогда объем равен 18*3=54
ответ 54 ед. куб.
Площадь боковой поверхности пирамиды (Sбок) равна сумме площадей боковых граней пирамиды⇒
площадь одной боковой грани S = Sбок / 3
S = 54 / 3 = 18 (см²)
Апофема - высота (h) боковой грани пирамиды.
Площадь равнобедренного треугольника S = 1/2 * a * h, где
a - сторона основания равнобедренного треугольника (она же сторона основания пирамиды), h - высота равнобедренного треугольника
1/2 * a * 12 = 18
6a = 18
a = 3 (cм)
Сторона основания пирамиды равна 3 см